Learning Neural Network Subspaces

Overview

Learning Neural Network Subspaces

Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin, Ali Farhadi, Mohammad Rastegari.

Figure1

Abstract

Recent observations have advanced our understanding of the neural network optimization landscape, revealing the existence of (1) paths of high accuracy containing diverse solutions and (2) wider minima offering improved performance. Previous methods observing diverse paths require multiple training runs. In contrast we aim to leverage both property (1) and (2) with a single method and in a single training run. With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks. These neural network subspaces contain diverse solutions that can be ensembled, approaching the ensemble performance of independently trained networks without the training cost. Moreover, using the subspace midpoint boosts accuracy, calibration, and robustness to label noise, outperforming Stochastic Weight Averaging.

Code Overview

In this repository we walk through learning neural network subspaces with PyTorch. We will ground the discussion with learning a line of neural networks. In our code, a line is defined by endpoints weight and weight1 and a point on the line is given by w = (1 - alpha) * weight + alpha * weight1 for some alpha in [0,1].

Algorithm 1 (see paper) works as follows:

  1. weight and weight1 are initialized independently.
  2. For each batch data, targets, alpha is chosen uniformly from [0,1] and the weights w = (1 - alpha) * weight + alpha * weight1 are used in the forward pass.
  3. The regularization term is computed (see Eq. 3).
  4. With loss.backward() and optimizer.step() the endpoints weight and weight1 are updated.

Instead of using a regular nn.Conv2d we instead use a SubspaceConv (found in modes/modules.py).

class SubspaceConv(nn.Conv2d):
    def forward(self, x):
        w = self.get_weight()
        x = F.conv2d(
            x,
            w,
            self.bias,
            self.stride,
            self.padding,
            self.dilation,
            self.groups,
        )
        return x

For each subspace type (lines, curves, and simplexes) the function get_weight must be implemented. For lines we use:

class TwoParamConv(SubspaceConv):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.weight1 = nn.Parameter(torch.zeros_like(self.weight))

    def initialize(self, initialize_fn):
        initialize_fn(self.weight1)

class LinesConv(TwoParamConv):
    def get_weight(self):
        w = (1 - self.alpha) * self.weight + self.alpha * self.weight1
        return w

Note that the other endpoint weight is instantiated and initialized by nn.Conv2d. Also note that there is an equivalent implementation for batch norm layers also found in modes/modules.py.

Now we turn to the training logic which appears in trainers/train_one_dim_subspaces.py. In the snippet below we assume we are not training with the layerwise variant (args.layerwise = False) and we are drawing only one sample from the subspace (args.num_samples = 1).

for batch_idx, (data, target) in enumerate(train_loader):
    data, target = data.to(args.device), target.to(args.device)

    alpha = np.random.uniform(0, 1)
    for m in model.modules():
        if isinstance(m, nn.Conv2d) or isinstance(m, nn.BatchNorm2d):
            setattr(m, f"alpha", alpha)

    optimizer.zero_grad()
    output = model(data)
    loss = criterion(output, target)

All that's left is to compute the regularization term and call backward. For lines, this is given by the snippet below.

    num = 0.0
    norm = 0.0
    norm1 = 0.0
    for m in model.modules():
        if isinstance(m, nn.Conv2d):
            num += (self.weight * self.weight1).sum()
            norm += self.weight.pow(2).sum()
            norm1 += self.weight1.pow(2).sum()
    loss += args.beta * (num.pow(2) / (norm * norm1))

    loss.backward()

    optimizer.step()

Training Lines, Curves, and Simplexes

We now walkthrough generating the plots in Figures 4 and 5 of the paper. Before running code please install PyTorch and Tensorboard (for making plots you will also need tex on your computer). Note that this repository differs from that used to generate the figures in the paper, as the latter leveraged Apple's internal tools. Accordingly there may be some bugs and we encourage you to submit an issue or send an email if you run into any problems.

In this example walkthrough we consider TinyImageNet, which we download to ~/data using a script such as this. To run standard training and ensemble the trained models, use the following command:

python experiment_configs/tinyimagenet/ensembles/train_ensemble_members.py
python experiment_configs/tinyimagenet/ensembles/eval_ensembles.py

Note that if your data is not in ~/data please change the paths in these experiment configs. Logs and checkpoints be saved in learning-subspaces-results, although this path can also be changed.

For one dimensional subspaces, use the following command to train:

python experiment_configs/tinyimagenet/one_dimensional_subspaces/train_lines.py
python experiment_configs/tinyimagenet/one_dimensional_subspaces/train_lines_layerwise.py
python experiment_configs/tinyimagenet/one_dimensional_subspaces/train_curves.py

To evaluate (i.e. generate the data for Figure 4) use:

python experiment_configs/tinyimagenet/one_dimensional_subspaces/eval_lines.py
python experiment_configs/tinyimagenet/one_dimensional_subspaces/eval_lines_layerwise.py
python experiment_configs/tinyimagenet/one_dimensional_subspaces/eval_curves.py

We recommend looking at the experiment config files before running, which can be modified to change the type of model, number of random seeds. The default in these configs is 2 random seeds.

Analogously, to train simplexes use:

python experiment_configs/tinyimagenet/simplexes/train_simplexes.py
python experiment_configs/tinyimagenet/simplexes/train_simplexes_layerwise.py

For generating plots like those in Figure 4 and 5 use:

python analyze_results/tinyimagenet/one_dimensional_subspaces.py
python analyze_results/tinyimagenet/simplexes.py

Equivalent configs exist for other datasets, and the configs can be modified to add label noise, experiment with other models, and more. Also, if there is any functionality missing from this repository that you would like please also submit an issue.

Bibtex

@article{wortsman2021learning,
  title={Learning Neural Network Subspaces},
  author={Wortsman, Mitchell and Horton, Maxwell and Guestrin, Carlos and Farhadi, Ali and Rastegari, Mohammad},
  journal={arXiv preprint arXiv:2102.10472},
  year={2021}
}
Owner
Apple
Apple
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
This tool uses Deep Learning to help you draw and write with your hand and webcam.

This tool uses Deep Learning to help you draw and write with your hand and webcam. A Deep Learning model is used to try to predict whether you want to have 'pencil up' or 'pencil down'.

lmagne 169 Dec 10, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019) We propose Disentangled Audio-Visual System (DAVS) to ad

Hang_Zhou 750 Dec 23, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

AlexZou 72 Dec 13, 2022
SynNet - synthetic tree generation using neural networks

SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s

Wenhao Gao 60 Dec 29, 2022
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023