A task-agnostic vision-language architecture as a step towards General Purpose Vision

Related tags

Deep Learninggpv-1
Overview

Towards General Purpose Vision Systems

By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem

teaser

Overview

Welcome to the official code base for GPV-I - a general purpose vision-language architecture that can learn and perform any task that requires bounding boxes or text prediction. We demonstrate the effectiveness of GPV-I by jointly training it on VQA, Captioning, Localization, and Classification tasks and achieveing favorable performance in comparison to specialized single-task models.

Available on Arxiv: https://arxiv.org/abs/2104.00743

Project Page: https://prior.allenai.org/projects/gpv

Demo: https://vision-explorer.allenai.org/general_purpose_vision

BibTex:

@article{Gupta2021GPV,
  title={Towards General Purpose Vision Systems},
  author={Tanmay Gupta and A. Kamath and Aniruddha Kembhavi and Derek Hoiem},
  journal={ArXiv},
  year={2021},
  volume={abs/2104.00743}
}

Clone repository

git clone --recurse-submodules [email protected]:allenai/gpv-1.git

Install dependencies

Create conda environment

conda create -n gpv python=3.6 -y
conda activate gpv

Install libraries

bash setup_conda_env.sh

Paths

Decide the following paths:

  • <data_dir>: This is the directory where images and annotations will be saved
  • <output_dir>: This is where outputs of various experiments will be saved including model checkpoints, visualization, inference and evaluation results

<data_dir> and <output_dir> refer to these absolute paths in the instructions below.

Download data

To study generalization of concepts across skills, we created a new split of COCO annotations - COCO-SCE. To download the original and our new split, pretrained DETR checkpoints on both splits run the following:

bash setup_data.sh <data_dir>

Note - If you intend to run experiments only on COCO-SCE, you can skip downloading COCO test images and save time and disk space by setting download_coco_test_images=False in setup_data.sh

Download model

Model Split Download
GPV COCO Link
GPV COCO-SCE Link

To use any of these models, download them into <output_dir>/<exp_name>/ckpts directory as follows:

wget <link> -P <output_dir>/<exp_name>/ckpts/

<exp_name> could be any directory name of your choice such as gpv_coco or gpv_coco_sce.

Test the model interactively

We provide easy to use interactive IPython notebooks where you may provide an image and a natural language task description and visualize the models outputs, namely - bounding boxes for relevant image regions and text answer. Note that while some tasks might expect only one of the output modalities, the model always outputs both. For example, the model outputs relevant regions during captioning and text during localization. These auxiliary outputs may be unsolicited but often provide useful and diagnostic information.

We provide the following notebooks:

  • inference.ipynb: This demonstrates inference for GPV-1 using greedy inference for text decoding as used in all experiments in our paper.
  • inference_beam_search.ipynb: Post-submission, we implemented beam search! This also allows greedy inference by setting beam size to 1. This also allows sampling multiple high ranking text outputs which is especially useful for tasks with multiple plausible outputs such as captioning.

We also provide equivalent .py scripts to run inference on a single image and task description pair. To run these scripts update output_dir, ckpt, inputs.img, and inputs.query in configs/exp/gpv_inference_cmdline.yaml.

For inference with beam search run:

python -m inference_beam_search beam_size=5

For greedy decoding either set beam_size to 1 in the previous command or run the following:

python -m inference

Train model

We provide scripts for training GPV on one or more of the following tasks:

  • CocoClassification
  • CocoVqa
  • CocoDetection (refered to as the Localization task in the paper)
  • CocoCaptioning

Training GPV-1 involves 3 steps:

  • Step 1: Update the configs/exp/gpv.yaml file. Here are the key parameters to consider (the ones marked with a star will be set later in Step 3):

    • num_gpus_per_node (set to 4 if you have 24GB GPUs, 2 for 48GB, and 1 for 80GB)
    • dist_url
    • output_dir *
    • data_dir *
    • model.pretr_detr *
  • Step 2: Decide the dataset or combination of supported datasets to train the model. This is specified through one of the files in configs/learning_datasets. For instance, all.yaml trains on all 4 tasks, cap_vqa.yaml trains on CocoCaptioning & CocoVqa, and cap.yaml trains only on CocoCaptioning. If you don't see a dataset combination you may add one by modifying all.yaml. We refer to the name of the chosen yaml file without the extension by <learning_datasets>

  • Step 3: Launch training as follows:

    bash exp/gpv/scripts/train.sh <learning_datasets> <data_split> <exp_name> <output_dir> <data_dir>
    

    Note that training comprises of 2 sub-steps. First, the model is trained for training.frozen_epochs (in configs/exp/gpv.yaml) steps with DETR weights frozen. Then the model is finetuned end-to-end for a total of training.num_epochs epochs. train_gpv.sh executes both steps sequentially. model.pretr_detr is selected automatically in train.sh based on <data_split>.

  • Step 4: Visualize loss, metrics, and learning rate on tensorboard:

    tensorboard --logdir=<output_dir> --bind_all
    
  • Step 5: Predictions are visualized on a small set of train and validation set samples every few thousand iterations (training.vis_step). These are available at <output_dir>/<exp_name>/training_visualizations

Evaluation

We provide evaluation code for the following tasks:

  • CocoClassification
  • CocoVqa
  • CocoDetection (refered to as the Localization task in the paper)
  • CocoCaptioning
  • RefCocop

Run the following command to evaluate on one or a set of tasks

bash exp/gpv/scripts/eval.sh <exp_name> <task_name> <subset> <split> <output_dir> <data_dir>
  • <exp_name>: name of the experiment directory (<output_dir>/<exp_name>) where the model to be evaluated lives.
  • <task_name>: set to all to evaluate on all 5 tasks, all_but_refexp to evalute on all tasks excepts RefCocop, or the name of tasks to evaluate only on that task.
  • <subset>: set to train or val for COCO (no test since COCO test annotations are hidden) and train, val, or test for COCO-SCE.
  • <split>: set to original_split (COCO) or gpv_split (COCO-SCE). This flag is unused for RefCocop.

Predictions and metrics are saved at <output_dir>/<exp_name>/eval.

If you wish to evaluate captioning or vqa performnce on the COCO test images, we provide scripts to generate predictions in the format expected by their respective official evaluation servers (Captioning eval server, VQA eval server). You may run these as follows:

bash exp/gpv/scripts/eval_<cap/vqa>_test.sh <exp_name> <subset> <output_dir> <data_dir>

<subset> may be test or testdev for VQA and val or test for Captioning.

Finetune GPV-1

GPV-1 can be finetuned on your data. To evaluate GPV-1's learning efficiency and extent of catastrophic forgetting, we provide scripts to finetune GPV on RefCocop. These scripts may also be used as an example of finetuning GPV on your own data.

To finetune pretrained GPV-1 on RefCocop, run the following

bash exp/gpv/scripts/ft_gpv.sh <ckpt> <train_perc> <output_dir> <data_dir>
  • <ckpt>: absolute path of the GPV-1 checkpoint that you want to initialize the training with
  • <train_perc>: percentage of the full Refcocop training set to use for learning. Supported values include 1, 2, 5, 10, 25, 50, 75, 100. These subsampled subsets can be found in <data_dir>/learning_phase_data/refcocop/

The evaluation script described in the previous section works for Refcocop evaluation as well.

A note on GPU memory requirements

  • The current hyperparameters are chosen for training GPV-1 with a batch size of 120 samples. This leads to significant GPU memory requirements during training (e.g. 5-7 days of training on four 24GB GPUs).
  • While training is memory intensive, evaluation is easily run on a single GPU (you may further reduce batch size for evaluation using eval.batch_size flag in gpv.yaml file if working with low memory GPUs).
  • It may be possible to trade-off GPU memory with training time by reducing training batch size using the training.batch_size flag. However, this might require tuning the hyperparameters to achieve competitive performance.
  • Finally, if working with COCO-like data or when finetuning from a pretrained GPV-1 checkpoint, you might be able to get good performance with low GPU memory requirements by freezing the DETR backbone (training.freeze=True) and only training the remaining modules.
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning

Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker

Arçelik ARGE Açık Kaynak Yazılım Organizasyonu 0 Nov 30, 2021
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
Image-retrieval-baseline - MUGE Multimodal Retrieval Baseline

MUGE Multimodal Retrieval Baseline This repo is implemented based on the open_cl

47 Dec 16, 2022
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.

Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work

Zeyad Mansour 276 Jan 07, 2023
Some pre-commit hooks for OpenMMLab projects

pre-commit-hooks Some pre-commit hooks for OpenMMLab projects. Using pre-commit-hooks with pre-commit Add this to your .pre-commit-config.yaml - rep

OpenMMLab 16 Nov 29, 2022
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022