A simple interface for editing natural photos with generative neural networks.

Overview

Neural Photo Editor

A simple interface for editing natural photos with generative neural networks.

GUI1 GUI2 GUI3

This repository contains code for the paper "Neural Photo Editing with Introspective Adversarial Networks," and the Associated Video.

Installation

To run the Neural Photo Editor, you will need:

  • Python, likely version 2.7. You may be able to use early versions of Python2, but I'm pretty sure there's some incompatibilities with Python3 in here.
  • Theano, development version.
  • lasagne, development version.
  • I highly recommend cuDNN as speed is key, but it is not a dependency.
  • numpy, scipy, PIL, Tkinter and tkColorChooser, but it is likely that your python distribution already has those.

Running the NPE

By default, the NPE runs on IAN_simple. This is a slimmed-down version of the IAN without MDC or RGB-Beta blocks, which runs without lag on a laptop GPU with ~1GB of memory (GT730M)

If you're on a Windows machine, you will want to create a .theanorc file and at least set the flag FLOATX=float32.

If you're on a linux machine, you can just insert THEANO_FLAGS=floatX=float32 before the command line call.

If you don't have cuDNN, simply change line 56 of the NPE.py file from dnn=True to dnn=False. Note that I presently only have the non-cuDNN option working for IAN_simple.

Then, run the command:

python NPE.py

If you wish to use a different model, simply edit the line with "config path" in the NPE.py file.

You can make use of any model with an inference mechanism (VAE or ALI-based GAN).

Commands

  • You can paint the image by picking a color and painting on the image, or paint in the latent space canvas (the red and blue tiles below the image).
  • The long horizontal slider controls the magnitude of the latent brush, and the smaller horizontal slider controls the size of both the latent and the main image brush.
  • You can select different entries from the subset of the celebA validation set (included in this repository as an .npz) by typing in a number from 0-999 in the bottom left box and hitting "infer."
  • Use the reset button to return to the ground truth image.
  • Press "Update" to update the ground-truth image and corresponding reconstruction with the current image. Use "Infer" to return to an original ground truth image from the dataset.
  • Use the sample button to generate a random latent vector and corresponding image.
  • Use the scroll wheel to lighten or darken an image patch (equivalent to using a pure white or pure black paintbrush). Note that this automatically returns you to sample mode, and may require hitting "infer" rather than "reset" to get back to photo editing.

Training an IAN on celebA

You will need Fuel along with the 64x64 version of celebA. See here for instructions on downloading and preparing it.

If you wish to train a model, the IAN.py file contains the model configuration, and the train_IAN.py file contains the training code, which can be run like this:

python train_IAN.py IAN.py

By default, this code will save (and overwrite!) the weights to a .npz file with the same name as the config.py file (i.e. "IAN.py -> IAN.npz"), and will output a jsonl log of the training with metrics recorded after every chunk.

Use the --resume=True flag when calling to resume training a model--it will automatically pick up from the most recent epoch.

Sampling the IAN

You can generate a sample and reconstruction+interpolation grid with:

python sample_IAN.py IAN.py

Note that you will need matplotlib. to do so.

Known Issues/Bugs

My MADE layer currently only accepts hidden unit sizes that are equal to the size of the latent vector, which will present itself as a BAD_PARAM error.

Since the MADE really only acts as an autoregressive randomizer I'm not too worried about this, but it does bear looking into.

I messed around with the keywords for get_model, you'll need to deal with these if you wish to run any model other than IAN_simple through the editor.

Everything is presently just dumped into a single, unorganized directory. I'll be adding folders and cleaning things up soon.

Notes

Remainder of the IAN experiments (including SVHN) coming soon.

I've integrated the plat interface which makes the NPE itself independent of framework, so you should be able to run it with Blocks, TensorFlow, PyTorch, PyCaffe, what have you, by modifying the IAN class provided in models.py.

Acknowledgments

This code contains lasagne layers and other goodies adopted from a number of places:

Owner
Andy Brock
Dimensionality Diabolist
Andy Brock
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
Txt2Xml tool will help you convert from txt COCO format to VOC xml format in Object Detection Problem.

TXT 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Txt2Xml too

Nguyễn Trường Lâu 4 Nov 24, 2022
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022