Synthetic data for the people.

Overview

zpy: Synthetic data in Blender.

WebsiteInstallDocsExamplesCLIContributeLicence

Discord Twitter Youtube PyPI Docs

Synthetic raspberry pi

Abstract

Collecting, labeling, and cleaning data for computer vision is a pain. Jump into the future and create your own data instead! Synthetic data is faster to develop with, effectively infinite, and gives you full control to prevent bias and privacy issues from creeping in. We created zpy to make synthetic data easy, by simplifying the scene creation process and providing an easy way to generate synthetic data at scale.

Install

Install: Using Blender GUI

First download the latest zip (you want the one called zpy_addon-v*.zip). Then open up Blender. Navigate to Edit -> Preferences -> Add-ons. You should be able to install and enable the addon from there.

Enabling the addon

Install: Linux: Using Install Script

$ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/ZumoLabs/zpy/main/install.sh)"

Set these environment variables for specific versions:

export BLENDER_VERSION="2.91"
export BLENDER_VERSION_FULL="2.91.0"
export ZPY_VERSION="v1.0.0"

Documentation

More documentation can be found here

Examples

Tutorials

Projects

CLI

We provide a simple CLI, you can find documentation here.

Contributing

We welcome community contributions! Search through the current issues or open your own.

Licence

This release of zpy is under the GPLv3 license, a free copyleft license used by Blender. TLDR: Its free, use it!

BibTeX

If you use zpy in your research, we would appreciate the citation!

@article{zpy,
  title={zpy: Synthetic data for Blender.},
  author={Ponte, H. and Ponte, N. and Karatas, K},
  journal={GitHub. Note: https://github.com/ZumoLabs/zpy},
  volume={1},
  year={2020}
}
Comments
  • Improving Rendering & Processing Speed with AWS

    Improving Rendering & Processing Speed with AWS

    Is your feature request related to a problem? Please describe. I'm frustrated by the time it is taking to process images on my local device (the rendering isn't the worst but the annotations are taking a long time at the end). I would like to use AWS EC2 instances to reduce the time required to create images and annotations (especially the category segmentation which seems to take a long time to encode into the annotation).

    Do you have any suggestions as to the kinds of instances or methods on AWS can be used to reduce rendering and processing time? That would be immensely helpful. Thank you.

    question 
    opened by tgorm1965 14
  • Is it possible to segment parts of an object based on it's material?

    Is it possible to segment parts of an object based on it's material?

    Is your feature request related to a problem? Please describe. I would like to segment a complex mesh that is made up of different components with different materials for every component. Is it possible to segment based off the material? Or do i need to separate the single mesh into multiple components?

    question 
    opened by tgorm1965 13
  • Bounding Box generation Error

    Bounding Box generation Error

    I've created this Blender scene where I have a dice, and I'm using ZPY to generate a dataset composed of images obtained by rotating around the object and jittering both the dice position and the camera. Everything seems to be working properly, but the bounding-boxes generated on the annotation file get progressively worse with each picture.

    For example this is the first image's bounding-box: image

    This one we get halfway through: image

    And this is one of the last ones: image

    This is my code (I've cut some stuff, I can't paste it all for some reason):

    
    def run(num_steps = 20):
        
        # Random seed results in unique behavior
        zpy.blender.set_seed()
    
        # Create the saver object
        saver = zpy.saver_image.ImageSaver(description="Domain randomized dado")
    
        # Add the dado category
        dado_seg_color = zpy.color.random_color(output_style="frgb")
        saver.add_category(name="dado", color=dado_seg_color)
    
        # Segment Suzzanne (make sure a material exists for the object!)
        zpy.objects.segment("dado", color=dado_seg_color)
        
        # Original dice pose
        zpy.objects.save_pose("dado", "dado_pose_og")
        
        #Original camera pose
        zpy.objects.save_pose("Camera", "Camera_pose_og")
    
        # Save the positions of objects so we can jitter them later
        zpy.objects.save_pose("Camera", "cam_pose")
        zpy.objects.save_pose("dado", "dado_pose")
        
        asset_dir = Path(bpy.data.filepath).parent
        texture_paths = [
            asset_dir / Path("textures/madera.png"),
            asset_dir / Path("textures/ladrillo.png"),
        ]
        
    
        # Run the sim.
        for step_idx in range(num_steps):
            # Example logging
            # stp = zpy.blender.step()
            # print("BLENDER STEPS: ", stp.num_steps)
            # log.debug("This is a debug log")
    
            # Return camera and dado to original positions
            zpy.objects.restore_pose("Camera", "cam_pose")
            zpy.objects.restore_pose("dado", "dado_pose")
            
            # Rotate camera
            location = bpy.context.scene.objects["Camera"].location
            angle = step_idx*360/num_steps
            location = rotate(location, angle, axis=(0, 0, 1))
            bpy.data.objects["Camera"].location = location
            
            # Jitter dado pose
            zpy.objects.jitter(
                "dado",
                translate_range=((-300, 300), (-300, 300), (0, 0)),
                rotate_range=(
                    (0, 0),
                    (0, 0),
                    (-math.pi, math.pi),
                ),
            )
    
            # Jitter the camera pose
            zpy.objects.jitter(
                "Camera",
                translate_range=(
                    (-5, 5),
                    (-5, 5),
                    (-5, 5),
                ),
            )
    
            # Camera should be looking at dado
            zpy.camera.look_at("Camera", bpy.data.objects["dado"].location)
            
            texture_path = random.choice(texture_paths)
            
            # HDRIs are like a pre-made background with lighting
            # zpy.hdris.random_hdri()
    
            # Pick a random texture from the 'textures' folder (relative to blendfile)
            # Textures are images that we will map onto a material
            new_mat = zpy.material.make_mat_from_texture(texture_path)
            # zpy.material.set_mat("dado", new_mat)
    
            # Have to segment the new material
            zpy.objects.segment("dado", color=dado_seg_color)
    
            # Jitter the dado material
            # zpy.material.jitter(bpy.data.objects["dado"].active_material)
    
            # Jitter the HSV for empty and full images
            '''
            hsv = (
                random.uniform(0.49, 0.51),  # (hue)
                random.uniform(0.95, 1.1),  # (saturation)
                random.uniform(0.75, 1.2),  # (value)
            )
            '''
    
            # Name for each of the output images
            rgb_image_name = zpy.files.make_rgb_image_name(step_idx)
            iseg_image_name = zpy.files.make_iseg_image_name(step_idx)
            depth_image_name = zpy.files.make_depth_image_name(step_idx)
    
            # Render image
            zpy.render.render(
                rgb_path=saver.output_dir / rgb_image_name,
                iseg_path=saver.output_dir / iseg_image_name,
                depth_path=saver.output_dir / depth_image_name,
                # hsv=hsv,
            )
    
            # Add images to saver
            saver.add_image(
                name=rgb_image_name,
                style="default",
                output_path=saver.output_dir / rgb_image_name,
                frame=step_idx,
            )
            saver.add_image(
                name=iseg_image_name,
                style="segmentation",
                output_path=saver.output_dir / iseg_image_name,
                frame=step_idx,
            )
            saver.add_image(
                name=depth_image_name,
                style="depth",
                output_path=saver.output_dir / depth_image_name,
                frame=step_idx,
            )
    
            # Add annotation to segmentation image
            saver.add_annotation(
                image=rgb_image_name,
                seg_image=iseg_image_name,
                seg_color=dado_seg_color,
                category="dado",
            )
            
    
        # Write out annotations
        saver.output_annotated_images()
        saver.output_meta_analysis()
    
        # ZUMO Annotations
        zpy.output_zumo.OutputZUMO(saver).output_annotations()
    
        # COCO Annotations
        zpy.output_coco.OutputCOCO(saver).output_annotations()
        
        # Volver al estado inicial
        zpy.objects.restore_pose("dado", "dado_pose_og")
        zpy.objects.restore_pose("Camera", "Camera_pose_og")
    

    Is this my fault or an actual bug?

    • OS: Ubuntu 20.04
    • Python 3.9
    • Blender 2.93
    • zpy: latest
    bug 
    opened by franferraz98 7
  • Better Run button

    Better Run button

    To properly run the "run" script, a zpy user has to click the "Run" button under the ZPY panel. If they click the "Run" button in the Blender script panel, it will not save and reset the scene, resulting in simulation drift. We should provide a warning, or simply make the "run" button in the blender script also a valid option.

    bug enhancement 
    opened by hu-po 7
  • Question: Is there a method to obtain the height and width of every pixel of a depth map?

    Question: Is there a method to obtain the height and width of every pixel of a depth map?

    Hi, I would like to obtain this information to accompany the depth maps produced by ZPY. Is this possible using ZPY's implementation? How would I go about this? Thank you!

    question 
    opened by tgorm1965 6
  • Code Formatting

    Code Formatting

    Ran automatic code formatting with the following git pre-commit hooks:

    • black
    • trailing-whitespace-fixer
    • end-of-file-fixer
    • add-trailing-comma

    Added a pre-commit config file in case any contributors would like to use these pre-commit git hooks going forward.

    opened by zkneupper 6
  • Cannot create COCO annotations when RGB and Segmentation images are in Separate folder

    Cannot create COCO annotations when RGB and Segmentation images are in Separate folder

    Hi , I am trying to generate data with annotations, where my output_dir is the parent folder and I save my RGB and ISEG images in the children folders for example data/rgb_images and data/iseg_images. I also have another folder for annotations as data/coco_annotations. I am successfully able to render images however, I cannot generate COCO annotations. As far as I understand from the source code, it parses image path w.r.t. the saver.output_dir + filename instead of the directories where images are actually stored.

    Thanks!!!

    opened by aadi-mishra 4
  • Allow Custom scaling for HDRI Background

    Allow Custom scaling for HDRI Background

    Hi, This is a small feature I'd like to be added to "zpy.hdris.random_hdri()" function. Currently, the function doesn't accept a custom scale from user and renders the HDRI background in the default scale w.r.t the 3D object.

    It would helpful if a parameter can be added to random_hdri() so that it can be passed to load_hdri(). This would allow us to play with the HDRI background scaling.

    hdri enhancement 
    opened by Resh-97 4
  • Give multiple objects the same tag

    Give multiple objects the same tag

    Describe the solution you'd like Not sure if this already exists but I'd like to be able to give numerous object meshes have one label. If it does, please let me know!

    question 
    opened by yashdutt20 4
  • AOV Pass Error

    AOV Pass Error

    Describe the bug A key error is occurring in zpy. Can you help me figure out how to fix this?

    To Reproduce Steps to reproduce the behavior: I have followed the Suzanne script from the first video of the youtube channel.

    Expected behavior To save and render the images.

    Screenshots File "/Applications/Blender.app/Contents/Resources/2.91/python/lib/python3.7/site-packages/zpy/render.py", line 42, in make_aov_pass view_layer['aovs'][-1]['name'] = style KeyError: 'bpy_struct[key]: key "aovs" not found' In call to configurable 'make_aov_pass' (<function make_aov_pass at 0x1576194d0>) In call to configurable 'make_aov_file_output_node' (<function make_aov_file_output_node at 0x15761db00>) In call to configurable 'render_aov' (<function render_aov at 0x157623560>) Error: Python script failed, check the message in the system console Executing script failed with exception Error: Python script failed, check the message in the system console

    Desktop (please complete the following information):

    • OS: Mac OS Catalina 10.15.5
    • latest zpy
    opened by yashdutt20 3
  • KeyError: 'bpy_struct[key]: key

    KeyError: 'bpy_struct[key]: key "aovs" not found'

    Describe the bug I downloaded Suzanne 1 example from your repository and run it using Blender 2.91 and your library.

    I got following error:

    Traceback (most recent call last):
      File "/run.py", line 78, in <module>
      File "/run.py", line 35, in run
      File "/home/piotr/Files/blender/bar/lib/python3.7/site-packages/gin/config.py", line 1069, in gin_wrapper
        utils.augment_exception_message_and_reraise(e, err_str)
      File "/home/piotr/Files/blender/bar/lib/python3.7/site-packages/gin/utils.py", line 41, in augment_exception_message_and_reraise
        raise proxy.with_traceback(exception.__traceback__) from None
      File "/home/piotr/Files/blender/bar/lib/python3.7/site-packages/gin/config.py", line 1046, in gin_wrapper
        return fn(*new_args, **new_kwargs)
      File "/home/piotr/Files/blender/bar/lib/python3.7/site-packages/zpy/render.py", line 204, in render_aov
        output_node = make_aov_file_output_node(style=style)
      File "/home/piotr/Files/blender/bar/lib/python3.7/site-packages/gin/config.py", line 1069, in gin_wrapper
        utils.augment_exception_message_and_reraise(e, err_str)
      File "/home/piotr/Files/blender/bar/lib/python3.7/site-packages/gin/utils.py", line 41, in augment_exception_message_and_reraise
        raise proxy.with_traceback(exception.__traceback__) from None
      File "/home/piotr/Files/blender/bar/lib/python3.7/site-packages/gin/config.py", line 1046, in gin_wrapper
        return fn(*new_args, **new_kwargs)
      File "/home/piotr/Files/blender/bar/lib/python3.7/site-packages/zpy/render.py", line 82, in make_aov_file_output_node
        zpy.render.make_aov_pass(style)
      File "/home/piotr/Files/blender/bar/lib/python3.7/site-packages/gin/config.py", line 1069, in gin_wrapper
        utils.augment_exception_message_and_reraise(e, err_str)
      File "/home/piotr/Files/blender/bar/lib/python3.7/site-packages/gin/utils.py", line 41, in augment_exception_message_and_reraise
        raise proxy.with_traceback(exception.__traceback__) from None
      File "/home/piotr/Files/blender/bar/lib/python3.7/site-packages/gin/config.py", line 1046, in gin_wrapper
        return fn(*new_args, **new_kwargs)
      File "/home/piotr/Files/blender/bar/lib/python3.7/site-packages/zpy/render.py", line 42, in make_aov_pass
        view_layer['aovs'][-1]['name'] = style
    KeyError: 'bpy_struct[key]: key "aovs" not found'
      In call to configurable 'make_aov_pass' (<function make_aov_pass at 0x7f73bfd25f80>)
      In call to configurable 'make_aov_file_output_node' (<function make_aov_file_output_node at 0x7f73bfd25ef0>)
      In call to configurable 'render_aov' (<function render_aov at 0x7f73bfd28f80>)
    Error: Python script failed, check the message in the system console
    

    To Reproduce Steps to reproduce the behavior:

    1. Install Blender 2.91.
    2. Install zpy addon and zpy-zumo Python library.
    3. Download Suzanne 1 run.py script.
    4. Run Suzanne 1 run.py script.

    Expected behavior Suzanne 1 run.py script run without errors.

    bug 
    opened by VictorAtPL 3
  • Material jitter

    Material jitter

    Hi

    How would I got about jittering just one object material, whilst leaving others constant ??

    So for example- say I've got a car object. Car tyres are always matt black, and the taillights are always red- but the paintwork varies- might be gloss red or matt blue.

    Is this to do with the way that materials are assigned in Blender? i.e tyres would be fixed as black & paintwork would be inherited or determined by ZPY

    thank you

    Andrew

    opened by barney2074 0
  • HDRI & texture randomisation

    HDRI & texture randomisation

    Hi,

    thank you for ZPY- loving it & just what I need- thank you..!

    I've worked through the tutorials. Suzanne 3 YouTube content seems to differ from the latest Suzanne 3 python run.py on GitHub. Youtube has a Python list of explicit texture and HDRI paths, whereas Github seems to have moved it into a function ??

    To get it to work- from the documentation I though I just needed to create a \textures directory and a \hdris\1k directory in the same folder as the .blend file ??

    so: path/foo.blend path/textures/1.jpg path/textures/2.jpg path/hdris/1k/a.exr path/hdris/1k/b.exr

    However- I get a bunch of errors- looks like this is not correct I would be very grateful if you could point me in the right direction thanks again

    Andrew

    opened by barney2074 1
  • How to get the Normalised segmentation?

    How to get the Normalised segmentation?

    How to get the normalised segmentation?

    I want to generate the segmentation_float with the zpy.output_coco.OutputCOCO(saver).output_annotations().

    When I changed the code, it doesn't return any segmentation, just return the bbox.

    The reason I want to normalize these is I am using 4K image size for rendering and I am getting a large annotation files. For example for 5 images, the annotation file was 17Mb.

            {
                "category_id": 0,
                "image_id": 0,
                "id": 0,
                "iscrowd": false,
                "bbox": [
                    311.01,
                    239.01,
                    16.980000000000018,
                    240.98000000000002
                ],
                "area": 4091.8404000000046
            },
            {
                "category_id": 1,
                "image_id": 0,
                "id": 1,
                "iscrowd": false,
                "bbox": [
                    279.01,
                    223.01,
                    79.98000000000002,
                    120.98000000000002
                ],
                "area": 9675.980400000004
            },
    
    opened by c3210927 0
Releases(v1.4.1rc9)
Owner
Zumo Labs
The world is a simulation.
Zumo Labs
Script to download some free japanese lessons in portuguse from NHK

Nihongo_nhk This is a script to download some free japanese lessons in portuguese from NHK. It can be executed by installing the packages with: pip in

Matheus Alves 2 Jan 06, 2022
Codes for processing meeting summarization datasets AMI and ICSI.

Meeting Summarization Dataset Meeting plays an essential part in our daily life, which allows us to share information and collaborate with others. Wit

xcfeng 39 Dec 14, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
端到端的长本文摘要模型(法研杯2020司法摘要赛道)

端到端的长文本摘要模型(法研杯2020司法摘要赛道)

苏剑林(Jianlin Su) 334 Jan 08, 2023
This repository contains all the source code that is needed for the project : An Efficient Pipeline For Bloom’s Taxonomy Using Natural Language Processing and Deep Learning

Pipeline For NLP with Bloom's Taxonomy Using Improved Question Classification and Question Generation using Deep Learning This repository contains all

Rohan Mathur 9 Jul 17, 2021
Mapping a variable-length sentence to a fixed-length vector using BERT model

Are you looking for X-as-service? Try the Cloud-Native Neural Search Framework for Any Kind of Data bert-as-service Using BERT model as a sentence enc

Han Xiao 11.1k Jan 01, 2023
Ongoing research training transformer language models at scale, including: BERT & GPT-2

Megatron (1 and 2) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA.

NVIDIA Corporation 3.5k Dec 30, 2022
TextAttack 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP

TextAttack 🐙 Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About • Setup • Usage • Design About TextAttack

QData 2.2k Jan 03, 2023
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
A Python/Pytorch app for easily synthesising human voices

Voice Cloning App A Python/Pytorch app for easily synthesising human voices Documentation Discord Server Video guide Voice Sharing Hub FAQ's System Re

Ben Andrew 840 Jan 04, 2023
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.

Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag

Abel 211 Dec 28, 2022
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022
Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Applied Natural Language Processing in the Enterprise This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reill

Applied Natural Language Processing in the Enterprise 95 Jan 05, 2023
profile tools for pytorch nn models

nnprof Introduction nnprof is a profile tool for pytorch neural networks. Features multi profile mode: nnprof support 4 profile mode: Layer level, Ope

Feng Wang 42 Jul 09, 2022
Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP)

Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP) predictions: part-of-speech (POS) tags, chunking (CHK), name entity recognition (

jawahar 20 Apr 30, 2022
中文无监督SimCSE Pytorch实现

A PyTorch implementation of unsupervised SimCSE SimCSE: Simple Contrastive Learning of Sentence Embeddings 1. 用法 无监督训练 python train_unsup.py ./data/ne

99 Dec 23, 2022
COVID-19 Chatbot with Rasa 2.0: open source conversational AI

COVID-19 chatbot implementation with Rasa open source 2.0, conversational AI framework.

Aazim Parwaz 1 Dec 23, 2022
TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset.

TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset. TunBERT was applied to three NLP downstream tasks: Sentiment Analysis (S

InstaDeep Ltd 72 Dec 09, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

9 Jan 08, 2023