Automatic learning-rate scheduler

Overview

AutoLRS

This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published at ICLR 2021.

A TensorFlow version will appear in this repo later.

What is AutoLRS?

Finding a good learning rate schedule for a DNN model is non-trivial. The goal of AutoLRS is to automatically tune the learning rate (LR) over the course of training without human involvement. AutoLRS chops up the whole training process into a few training stages (each consists of τ steps), and its mission is to determine a constant LR for each training stage. AutoLRS treats the validation loss as a black-box function of LR, and uses Bayesian optimization (BO) to search for the best LR which can minimize the validation loss for each training stage. Because BO would require τ steps of training to evaluate the validation loss for each LR it explores, to reduce this cost, we only apply an LR to train the DNN for τ’ (τ’ << τ) steps and train an exponential time-series forecasting model to predict the loss after τ steps. In our default setting, τ’ = τ/10 and BO explores 10 LRs in each stage, so the number of steps for searching LR is equal to the number of steps for actual training.

AutoLRS does not depend on a pre-defined LR schedule, dataset, or a specified task and is compatible with almost all optimizers. The LR schedules auto-generated by AutoLRS lead to speedup over highly hand-tuned LR schedules for several state-of-the-art DNNs including ResNet-50, Transformer, and BERT.

Setup

$ pip install --user -r requirements.txt

How to use AutoLRS for your work?

autolrs_server.py is the brain of AutoLRS, which implements the search algorithm including BO and the exponential forecasting model.

autolrs_callback.py implements a callback which you can plug into your Pytorch training loop. The callback receives commands from the server via socket, adjusting the learning rate, saving/restoring model parameters and optimizer states according to commands sent from the server.

Notes

  • You need to pass two arguments min_lr and max_lr when launching autolrs_server.py to set the LR search interval. This interval can be found by an LR range test or simply set according to your experience. Do not set the min_lr too small (for example 1e-10), otherwise, BO will waste a lot of cycles to try exploring very small LR values.
  • The current AutoLRS does not search LR for warmup steps since warmup does not have an explicit optimization objective, such as minimizing the validation loss. Warmup usually takes very few steps, and its main purpose is to prevent deeper layers in a DNN from creating training instability, especially when training using a large batch size. You can manually add a warmup stage by setting warmup_step and warmup_lr when initializing the autolrs_callback.AutoLRS callback.

Example

We provide an example of using AutoLRS to train various DNNs on the CIFAR-10 dataset. The models are imported from kuangliu's great and simple pytorch-cifar repository.

Prerequisites: Python 3.6+, PyTorch 1.0+

Run the example

$ bash run.sh

Contact

You can contact us at [email protected]. We would love to hear your questions and feedback!

Poster

Owner
Yuchen Jin
Yuchen Jin
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
Pytorch implementation for RelTransformer

RelTransformer Our Architecture This is a Pytorch implementation for RelTransformer The implementation for Evaluating on VG200 can be found here Requi

Vision CAIR Research Group, KAUST 21 Nov 22, 2022
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
Pip-package for trajectory benchmarking from "Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds", ECMR'21

Map Metrics for Trajectory Quality Map metrics toolkit provides a set of metrics to quantitatively evaluate trajectory quality via estimating consiste

Mobile Robotics Lab. at Skoltech 31 Oct 28, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023