A Guide for Feature Engineering and Feature Selection, with implementations and examples in Python.

Overview

Feature Engineering & Feature Selection

A comprehensive guide [pdf] [markdown] for Feature Engineering and Feature Selection, with implementations and examples in Python.

Motivation

Feature Engineering & Selection is the most essential part of building a useable machine learning project, even though hundreds of cutting-edge machine learning algorithms coming in these days like deep learning and transfer learning. Indeed, like what Prof Domingos, the author of  'The Master Algorithm' says:

“At the end of the day, some machine learning projects succeed and some fail. What makes the difference? Easily the most important factor is the features used.”

— Prof. Pedro Domingos

001

Data and feature has the most impact on a ML project and sets the limit of how well we can do, while models and algorithms are just approaching that limit. However, few materials could be found that systematically introduce the art of feature engineering, and even fewer could explain the rationale behind. This repo is my personal notes from learning ML and serves as a reference for Feature Engineering & Selection.

Download

Download the PDF here:

Same, but in markdown:

PDF has a much readable format, while Markdown has auto-generated anchor link to navigate from outer source. GitHub sucks at displaying markdown with complex grammar, so I would suggest read the PDF or download the repo and read markdown with Typora.

What You'll Learn

Not only a collection of hands-on functions, but also explanation on Why, How and When to adopt Which techniques of feature engineering in data mining.

  • the nature and risk of data problem we often encounter
  • explanation of the various feature engineering & selection techniques
  • rationale to use it
  • pros & cons of each method
  • code & example

Getting Started

This repo is mainly used as a reference for anyone who are doing feature engineering, and most of the modules are implemented through scikit-learn or its communities.

To run the demos or use the customized function, please download the ZIP file from the repo or just copy-paste any part of the code you find helpful. They should all be very easy to understand.

Required Dependencies:

  • Python 3.5, 3.6 or 3.7
  • numpy>=1.15
  • pandas>=0.23
  • scipy>=1.1.0
  • scikit_learn>=0.20.1
  • seaborn>=0.9.0

Table of Contents and Code Examples

Below is a list of methods currently implemented in the repo.

1. Data Exploration

2. Feature Cleaning

3. Feature Engineering

4. Feature Selection

Key Links and Resources

  • Udemy's Feature Engineering online course

https://www.udemy.com/feature-engineering-for-machine-learning/

  • Udemy's Feature Selection online course

https://www.udemy.com/feature-selection-for-machine-learning

  • JMLR Special Issue on Variable and Feature Selection

http://jmlr.org/papers/special/feature03.html

  • Data Analysis Using Regression and Multilevel/Hierarchical Models, Chapter 25: Missing data

http://www.stat.columbia.edu/~gelman/arm/missing.pdf

  • Data mining and the impact of missing data

http://core.ecu.edu/omgt/krosj/IMDSDataMining2003.pdf

  • PyOD: A Python Toolkit for Scalable Outlier Detection

https://github.com/yzhao062/pyod

  • Weight of Evidence (WoE) Introductory Overview

http://documentation.statsoft.com/StatisticaHelp.aspx?path=WeightofEvidence/WeightofEvidenceWoEIntroductoryOverview

  • About Feature Scaling and Normalization

http://sebastianraschka.com/Articles/2014_about_feature_scaling.html

  • Feature Generation with RF, GBDT and Xgboost

https://blog.csdn.net/anshuai_aw1/article/details/82983997

  • A review of feature selection methods with applications

https://ieeexplore.ieee.org/iel7/7153596/7160221/07160458.pdf

Owner
Yimeng.Zhang
I'm a lovely machine learning learner~
Yimeng.Zhang
run-js Goal: The Easiest Way to Run JavaScript in Python

run-js Goal: The Easiest Way to Run JavaScript in Python features Stateless Async JS Functions No Intermediary Files Functional Programming CommonJS a

Daniel J. Dufour 9 Aug 16, 2022
Бэкапалка таблиц mysql 8 через брокер сообщений nats

nats-mysql-tables-backup Бэкап таблиц mysql 8 через брокер сообщений nats (проверено и работает в ubuntu 20.04, при наличии python 3.8) ПРИМЕРЫ: Ниже

Constantine 1 Dec 13, 2021
addons to the turtle package that help you drew stuff more quickly

TurtlePlus addons to the turtle package that help you drew stuff more quickly --------------

1 Nov 18, 2021
🎅🏻 Helping santa understand ✨ python ✨

☃️ Advent of code 2021 ☃️ Helping santa understand ✨ python ✨

Fluffy 2 Dec 25, 2021
A parser of Windows Defender's DetectionHistory forensic artifact, containing substantial info about quarantined files and executables.

A parser of Windows Defender's DetectionHistory forensic artifact, containing substantial info about quarantined files and executables.

Jordan Klepser 101 Oct 30, 2022
Open Source Management System for Botanic Garden Collections.

BotGard 3.0 Open Source Management System for Botanic Garden Collections built and maintained by netzkolchose.de in cooperation with the Botanical Gar

netzkolchose.de 1 Dec 15, 2021
Expense-manager - Expense manager with python

Expense_manager TO-DO Source extractor: Credit Card, Wallet Destination extracto

1 Feb 13, 2022
A python library with various gambling and gaming classes

gamble is a simple library that implements a collection of some common gambling-related classes Features die, dice, d-notation cards, decks, hands pok

Jacobi Petrucciani 16 May 24, 2022
HatAsm - a HatSploit native powerful assembler and disassembler that provides support for all common architectures

HatAsm - a HatSploit native powerful assembler and disassembler that provides support for all common architectures.

EntySec 8 Nov 09, 2022
Statically typed BNF with semantic actions; A frontend of frontend frameworks; Use your grammar everywhere.

Statically typed BNF with semantic actions; A frontend of frontend frameworks; Use your grammar everywhere.

Taine Zhao 56 Dec 14, 2022
Pokehandy - Data web app sobre Pokémon TCG que desarrollo durante transmisiones de Twitch, 2022

⚡️ Pokéhandy – Pokémon Hand Simulator [WIP 🚧 ] This application aims to simulat

Rodolfo Ferro 5 Feb 23, 2022
GibMacOS - Py2/py3 script that can download macOS components direct from Apple

Py2/py3 script that can download macOS components direct from Apple Can also now build Internet Recovery USB installers from Windows using dd and 7zip

CorpNewt 4.8k Jan 02, 2023
Vehicle Identification Speed Detection (VISD) extracts vehicle information like License Plate number, Manufacturer and colour from a video and provides this data in the form of a CSV file

Vehicle Identification Speed Detection (VISD) extracts vehicle information like License Plate number, Manufacturer and colour from a video and provides this data in the form of a CSV file. VISD can a

6 Feb 22, 2022
Mannaggia is a python application to praise or more likely to curse the saints

Mannaggia-py 👼 Remember Mannaggia? This is a Python remake of it, with new features. mannaggia is a python application to praise or more likely to cu

Christian Visintin 9 Aug 12, 2022
Replite - An embeddable REPL powered by JupyterLite

replite An embeddable REPL, powered by JupyterLite. Usage To embed the code cons

Jeremy Tuloup 47 Nov 09, 2022
Forward RSS feeds to your email address, community maintained

Getting Started With rss2email We highly recommend that you watch the rss2email project on GitHub so you can keep up to date with the latest version,

248 Dec 28, 2022
Python script for converting obsidian md-file to html (recursively adds all link/images)

ObsidianToHtmlConverter I made a small python script for converting obsidian md-file to static (local) html (recursively adds all link/images) I made

47 Jan 03, 2023
Scientific color maps and standardization tools

Scicomap is a package that provides scientific color maps and tools to standardize your favourite color maps if you don't like the built-in ones. Scicomap currently provides sequential, bi-sequential

Thomas Bury 14 Nov 30, 2022
A conda-smithy repository for boost-histogram.

The official Boost.Histogram Python bindings. Provides fast, efficient histogramming with a variety of different storages combined with dozens of composable axes. Part of the Scikit-HEP family.

conda-forge 0 Dec 17, 2021
Sorter makes file organisation and management easier.

Sorter Sorter makes file organisation easier. It simply helps you organise several files that contain similar characteristics into a single folder. Yo

Aswa Paul 34 Aug 14, 2022