The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

Overview

SSL models are Strong UDA learners

highlights

Introduction

This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners". It is based on pure PyTorch and presents the high effectiveness of SSL methods on UDA tasks. You can easily develop new algorithms, or readily apply existing algorithms. Codes for UDA methods and "UDA + SSL" are given in another project.

The currently supported algorithms include:

Semi-supervised learning for unsupervised domain adatation.
  • Semi-supervised learning by entropy minimization (Entropy Minimization, NIPS 2004)
  • Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks (Self-training, ICMLW 2013)
  • Temporal ensembling for semi-supervised learning (Pi-model, ICML 2017)
  • Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results (Mean-teacher, NIPS 2017)
  • Virtual adversarial training: a regularization method for supervised and semi-supervised learning (VAT, TPAMI 2018)
  • Mixmatch: A holistic approach to semi-supervised learning (MixMatch, NIPS 2019)
  • Unsupervised data augmentation for consistency training (UDA, NIPS 2020)
  • Fixmatch: Simplifying semi-supervised learning with consistency and confidence (FixMatch, NIPS 2020)

highlights

Installation

This implementation is based on the Transfer Learning Library. Please refer to 'requirements' for installation. Note that only "DistributedDataParallel" training is supported in the current branch.

Usage

We have examples in the directory examples. A typical usage is

# Train a FixMatch on Office-31 Amazon -> Webcam task using ResNet 50.
# Assume you have put the datasets under the path `args.datapath/office-31`, 
# or you are glad to download the datasets automatically from the Internet to this path. Please go to the dictionary ./examples, and run:
CUDA_VISIBLE_DEVICES=0,1,2,3 python ../main.py --use_ema --dist_url tcp://127.0.0.1:10013 --multiprocessing_distributed --regular_only_feature --p_cutoff 0.95 --seed 1  --epochs 30  --batchsize 32 --mu 7 --iters_per_epoch 250  --source A --target W  --method Fixmatch --save_dir ../log/Office31 --dataset Office31

In the directory examples, you can find all the necessary running scripts to reproduce the benchmarks with specified hyper-parameters. We don't provide the checkpoints since the training of each model is quick and there are too many tasks.

Contributing

Any pull requests or issues are welcome. Models of other SSL methods on UDA tasks are highly expected.

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@inproceedings{SSL2UDA,
  author = {xxx},
  title = {Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners},
  year = {2021},
  publisher = {xxx},
  journal = {xxx},
}

Acknowledgment

We would like to thank Transfer Learning Library for their excellent contribution.

License

MIT License, the same to Transfer Learning Library.

Owner
Yabin Zhang
Yabin Zhang
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
This is an easy python software which allows to sort images with faces by gender and after by age.

Gender-age Classifier This is an easy python software which allows to sort images with faces by gender and after by age. Usage First install Deepface

Claudio Ciccarone 6 Sep 17, 2022
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
Code repo for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper.

InterpretableMDE A PyTorch implementation for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper. arXiv link: https://arxiv.or

Zunzhi You 16 Aug 12, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022