This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest

Overview

Rachford-Rice Contest

This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest. Can you solve the Rachford-Rice problem for all these cases? With the initiative of Curtis Hays Whitson, and the extensive help by Aaron Zick, the original Rachford-Rice contest offered $1000 to any student who could solve the problem for all cases. Only three people were able to develop procedures that passed all the test, and none of these were students.

Today we are happy to re-release the Rachford-Rice contest, but now for Python. There are several differences between the original contest and this version, the main one being that this version will focus mainly on passing all the tests and not that much on speed. A timer will be set for your calculations, so if you want to optimize for speed as well you are free to do so.

To access the original version of the Rachford-Rice contest, go to this link.

Table of Contents

How do you access the code?

You can either use Git to clone the repository using

git clone https://github.com/WhitsonAS/Rachford-Rice-Contest.git

If you do not want to use Git or know how to use Git, you can manually download the repository by clicking the green code button and press the option called "Download ZIP".

Code download button

How do you enter your code?

The main stucture of the code is not to be modified at all, so you are only supposed to write code in certain designated files or functions. The file that contains the function which you have to change is called rachford_rice_solution.py and the function is called rachford_rice_solver(). This is the only place where you can change anything.

The function takes in the number of components (Nc) as an integer, the composition (zi) as a numpy array, and the K-values (Ki) as a numpy array.

The output of the function must be given in the following order, as the following types. The number of iterations used (N) as an integer, the vapor molar composition (yi) as a numpy array, the liquid molar composition (xi) as a numpy array, the vapor molar fraction (V) as a float, and the liquid molar fraction (L) as a float.

For debugging purposes, there is an option in section (3) in the main.py file in the function called is_converged() where you can turn on an optinal variable called print_to_console (which is False by default) by setting it to True. This feature will print some useful information about which tests pass / fail for each case.

See video 5 for an example of how to add you code.

Note that you're not allowed to change the floating point precision to get the desired threshold! The goal is that your algorithm should be able to have a threshold equal to your floating point precision. Any solution based on floating point manipulation of this kind will be disqualified.

When you have developed a code that you want to submit, make a folder within the folder called Solutions with the date of your submission (YYYYMMDD) and your name (e.g. 20211015-Markus-Hays-Nielsen) and add a file called solution.py within this folder (the relative path should look like this: Solutions/20211015-Markus-Hays-Nielsen/solution-py). The solution file should be possible to copy and paste straight into rachford_rice_solution.py and run with no modifications needed. If there is any issue with running your solution, you will be contacted and asked to fix the issue. If no answer is recived, the solution will be removed. This is meant to make everything easier for the reviewer and anyone else who wants to try your code.

The procedure for adding your code to the repository is to first make a new branch with your name (e.g. markus-hays-nielsen) and once you are ready to submit you can create a pull request with your file(s) in the structure detailed above. Once your code has been reviewed, we will add your code to the main branch and it will become public.

If you want to submit you solution privately, please contact us by mail at [email protected].

Basic theory about Rachford-Rice problem

The Rachford-Rice equation is a combination of (1) the material balance equation, (2) the assumption that the vapor (yi) and liquid (xi) compositions are defined by a constant set of K-values (Ki) and (3) that the sum of vapor and liquid molar fractions sum to one.

The equation is given by

equation

where zi is the total molar composition of component i, and V is the vapor molar fraction defined by

equation

where nV is the total molar amount of the vapor phase and nL is the total molar amount of the liquid phase.

The constraints for passing the contest are given by a set of test functions (R) and are given by

Vapor composition test

equation

Liquid composition test

equation

Vapor and liquid fraction test

equation

Material balance test

equation

K-value test

equation

where the threshold value (εt) is set to be 10-15.

The tests will be judged based on their severity which is given by

equation

For more information about the Rachford-Rice solution, watch the following videos:

List of participants who have successfully completed

  • Aaron Zick
  • Michael Michelsen
  • Kim Knudsen
An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

Khalid Saifullah 37 Sep 05, 2022
Multilingual finetuning of Machine Translation model on low-resource languages. Project for Deep Natural Language Processing course.

Low-resource-Machine-Translation This repository contains the code for the project relative to the course Deep Natural Language Processing. The goal o

Andrea Cavallo 3 Jun 22, 2022
Lightweight utility tools for the detection of multiple spellings, meanings, and language-specific terminology in British and American English

Breame ( British English and American English) Breame is a lightweight Python package with a number of utility tools to aid in the detection of words

Charles 8 Oct 10, 2022
CJK computer science terms comparison / 中日韓電腦科學術語對照 / 日中韓のコンピュータ科学の用語対照 / 한·중·일 전산학 용어 대조

CJK computer science terms comparison This repository contains the source code of the website. You can see the website from the following link: Englis

Hong Minhee (洪 民憙) 88 Dec 23, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Plugin repository for Macast

Macast-plugins Plugin repository for Macast. How to use third-party player plugin Download Macast from GitHub Release. Download the plugin you want fr

109 Jan 04, 2023
Reproduction process of BERT on SST2 dataset

BERT-SST2-Prod Reproduction process of BERT on SST2 dataset 安装说明 下载代码库 git clone https://github.com/JunnYu/BERT-SST2-Prod 进入文件夹,安装requirements pip ins

yujun 1 Nov 18, 2021
XLNet: Generalized Autoregressive Pretraining for Language Understanding

Introduction XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective.

Zihang Dai 6k Jan 07, 2023
Large-scale Knowledge Graph Construction with Prompting

Large-scale Knowledge Graph Construction with Prompting across tasks (predictive and generative), and modalities (language, image, vision + language, etc.)

ZJUNLP 161 Dec 28, 2022
A Python module made to simplify the usage of Text To Speech and Speech Recognition.

Nav Module The solution for voice related stuff in Python Nav is a Python module which simplifies voice related stuff in Python. Just import the Modul

Snm Logic 1 Dec 20, 2021
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
Production First and Production Ready End-to-End Keyword Spotting Toolkit

Production First and Production Ready End-to-End Keyword Spotting Toolkit

223 Jan 02, 2023
Prompt tuning toolkit for GPT-2 and GPT-Neo

mkultra mkultra is a prompt tuning toolkit for GPT-2 and GPT-Neo. Prompt tuning injects a string of 20-100 special tokens into the context in order to

61 Jan 01, 2023
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time

DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches the answers out of 60 billion phrases in Wikipedia, it is also v

Jinhyuk Lee 543 Jan 08, 2023
Codes for coreference-aware machine reading comprehension

Data and code for the paper "Tracing Origins: Coreference-aware Machine Reading Comprehension" at ACL2022. Dataset There are three folders for our thr

11 Sep 29, 2022
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training

GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper

Amazon Web Services - Labs 83 Jan 09, 2023
Japanese Long-Unit-Word Tokenizer with RemBertTokenizerFast of Transformers

Japanese-LUW-Tokenizer Japanese Long-Unit-Word (国語研長単位) Tokenizer for Transformers based on 青空文庫 Basic Usage from transformers import RemBertToken

Koichi Yasuoka 3 Dec 22, 2021
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022
This repository contains data used in the NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems

Proteno This is the data release associated with the corresponding NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deploymen

37 Dec 04, 2022