Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python

Overview

Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python 📊

Last updated on January 30, 2022 by Thomas J. Nicoletti

I would like to preface this document by stating this is my second major project using Python. From my first project to now, I certainly improved upon my understanding of and proficiency with Python, though I still have a long journey ahead of me. I aim to keep learning more and more everyday, and hope this project provides some benefit to the greater applied social science community.

The purpose of this data mining script is to use random forest classification, in conjunction with factor analysis and other analytic techniques, to automatically yield feature importance metrics and related output for a driver analysis. Driver analysis quantifies the importance of independent variables (i.e., drivers) in predicting some outcome variable. Within this repository is a basic, simulated dataset created by me, containing five independent variables and one outcome variable. I am by no means an expert in simulating datasets, so I encourage everyone to use real-world data as a stress test for this statistical tool.

This tool will communicate with users using simple inputs via the Command Prompt. Once all mandatory and optional inputs are received, the analysis will run and send relevant information to the source folder; this potentially includes text files, images, and data files useful for model comprehension and validation, as well as statistically- and conceptually-informed decision-making. The most useful outputs will include the automatically generated feature importance plot and feature quadrant chart.

💻 Installation and Preparation

Please note that excerpts of code provided below are examples based on the driver.py script. As a self-taught programmer, I suggest reading through my insights, mixing them with a quick Google search and your own experiences, and then delving into the script itself.

For this project, I used Python 3.9, the Microsoft Windows operating system, and Microsoft Excel. As such, these act as the prerequisites for utilizing this repository successfully without any additional troubleshooting. Going forward, please ensure everything you download or install for this project ends up in the correct location (e.g., the same source folder).

Use pip to install relevant packages to the proper source folder using the Command Prompt and correct PATH. For example:

pip install numpy
pip install pandas

Please be sure to install each of the following packages: easygui, matplotlib, numpy, pandas, seaborn, string, factor_analyzer, scipy, sklearn, and statsmodels. If required, use the first section of the script to determine lacking dependencies, and proceed accordingly.

📑 Script Breakdown

The script begins by calling relevant libraries in Python, as well as defining Mahalanobis distance, which is used to identify multivariate outliers in a later step of this project. Additionally, the Command Prompt will read a simple set of instructions for the user, including important information regarding categorical features, the location of the outcome variable within the dataset, and a required revision for missing data. Furthermore, the script will allow the user to specify a random seed for easy replication of this driver analysis at a later date:

import easygui
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
...
def mahalanobis(x = None, data = None, cov = None):
	mu = x - np.mean(data)
    ...
	return mah.diagonal()
...
seed = int(input('Please enter your numerical random seed for replication purposes: '))
np.random.seed(seed)
text = open('random_seed.txt', 'w')

The script has an entire section dedicated to understanding your dataset, including a quick process for uploading your data file, removing missing data, adding an outlier status variable, determining the final sample size, classifying variables, and so on:

df = pd.read_csv(easygui.fileopenbox())
df.dropna(inplace = True)
df['Mahalanobis'] = mahalanobis(x = df, data = df.iloc[:, :len(df.columns)], cov = None)
df['PValue'] = 1 - chi2.cdf(df['Mahalanobis'], len(df.columns) - 1)
...
n = df.shape[0]
text = open('sample_size.txt', 'w')
...
x = df.iloc[:, :-1]
y = np.ravel(df.iloc[:, -1])
feat = df.columns[:-1]
mean = np.array(df.describe().loc['mean'][:-1])

The script then checks for relevant statistical assumptions needed before determining if your dataset is appropriate for factor analysis. This includes Bartlett's Test of Sphericity and the Kaiser-Meyer-Olkin Test. Additionally, a scree plot is produced using principal components analysis to assist in factor analysis decision-making. Once all of this is reviewed, the user will provide relevant inputs regarding their driver analysis model:

bart = calculate_bartlett_sphericity(x)
bart = (str(round(bart[1], 2)))
text = open('sphericity.txt', 'w')
...
kmo = calculate_kmo(x)
kmo = (str(round(kmo[1], 2)))
text = open('factorability.txt', 'w')
...
pca = PCA()
pca.fit(x)
comp = np.arange(pca.n_components_)
plt.figure()

When it comes to choosing whether to run random forest classification on the original variables or transformed factors, the above information is critical. The user will be able to decide both A) whether or not to use factor analysis, and B) how many factors should be used in extraction if applicable. Additionally, if the user opts for the factor analysis route, they will also be able to determine whether all the factors or just the highest loading variable per factor should be used (please see lines 139-150 in the script). The following optional factor analysis and mandatory core analyses will run based on user specifications from the previous step:

fa = FactorAnalysis(n_components = factor, max_iter = 3000, rotation = 'varimax')
...
x = fa.transform(x)
...
load = pd.DataFrame(fa.components_.T.round(2), columns = cols, index = feat)
load.to_csv('factor_loadings.csv')
...
vif = pd.Series(variance_inflation_factor(x.values, i) for i in range(x.shape[1]))
vif = pd.DataFrame(np.array(vif.round(2)), columns = ['Variable Inflation Factor'], index = feat)
vif.T.to_csv('variable_inflation_factors.csv')
clf = RandomForestClassifier(n_estimators = 100, criterion = 'gini', max_features = 'auto', bootstrap = True, oob_score = True, class_weight = 'balanced').fit(x, y)
oob = str(round(clf.oob_score_, 2)).ljust(4, '0')
pred = clf.predict_proba(x)
loss = str(round(log_loss(y, pred), 2)).ljust(4, '0')
perf = pd.DataFrame({'Out-of-Bag Score': oob, 'Log Loss': loss}, index = ['Estimate'])
perf.to_csv('model_performance.csv')

Please note, the only current rotation method available in Python for factor analysis is varimax, as far as I know. If another rotation method is preferred, I would opt out of the factor analysis route, or try implementing your own solution from scratch. From these results, the feature importance plot and its respective feature quadrant chart can be graphed and saved automatically to the source folder. This is an especially useful and efficient data visualization tool to help express which variable(s) are most important in predicting your outcome. It also saves you quite a bit of time compared to graphing it yourself!

imp = clf.feature_importances_
sort = np.argsort(imp)
plt.figure()
plt.barh(range(len(sort)), imp[sort], color = 'mediumaquamarine', align = 'center')
plt.title('Feature Importance Plot')
plt.xlabel('Derived Importance →')
...
imps = []
score = []
for i, feat in enumerate(imp[sort]):
  imps.append(round(feat / imp[sort].mean() * 100, 0))
for i, feat in enumerate(mean[sort]):
  score.append(round(feat / mean[sort].mean() * 100, 0))
quad = pd.DataFrame({'Rescaled Observed Score →': score, 'Rescaled Derived Importance →': imps,
  'Feature': x.columns[sort]})

To run the script, I suggest using a batch file located in the source folder as follows:

python driver.py
PAUSE

Although the entire script is not reflected in the above breakdown, this information should prove helpful in getting the user accustomed to what this script aims to achieve. If any additional information and/or explanations are desired, please do not hesitate in reaching out!

📋 Next Steps

Although I feel this project is solid in its current state, I think one area of improvement would fall in the realm of optimizing the script and making it more pythonic. I am also quite interested in hearing feedback from users, including their field of practice, which variables they used for their analyses, and how satisfied they were with this statistical tool overall.

💡 Community Contribution

I am always happy to receive feedback, recommendations, and/or requests from anyone, especially new learners. Please click here for information about the license for this project.

Project Support

Please let me know if you plan to make changes to this project, or adapt the script to a project of your own interest. We can certainly collaborate to make this process as painless as possible!

📚 Additional Resources

  • My current work in market research introduced me to the idea of driver analysis and its usefulness; this statistical tool was created with that space in mind, though it is certainly applicable to all applied areas of business and social science
  • To learn more about calculating random forest classification in Python, click here to access scikit-learn
  • To learn more about calculating factor analysis in Python, click here to access scikit-learn
  • For easy-to-use text editing software, check out Sublime Text for Python and Atom for Markdown
Owner
Thomas
With a passion for research, I am eager to build upon my knowledge of statistical programming. My current areas of focus include data mining and psychometrics.
Thomas
Program that predicts the NBA mvp based on data from previous years.

NBA MVP Predictor A machine learning model using RandomForest Regression that predicts NBA MVP's using player data. Explore the docs » View Demo · Rep

Muhammad Rabee 1 Jan 21, 2022
Airflow ETL With EKS EFS Sagemaker

Airflow ETL With EKS EFS & Sagemaker (en desarrollo) Diagrama de la solución Imp

1 Feb 14, 2022
We're Team Arson and we're using the power of predictive modeling to combat wildfires.

We're Team Arson and we're using the power of predictive modeling to combat wildfires. Arson Map Inspiration There’s been a lot of wildfires in Califo

Jerry Lee 3 Oct 17, 2021
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Damien Farrell 81 Dec 26, 2022
Catalogue data - A Python Scripts to prepare catalogue data

catalogue_data Scripts to prepare catalogue data. Setup Clone this repo. Install

BigScience Workshop 3 Mar 03, 2022
Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Gabriele 3 Jul 05, 2022
Project: Netflix Data Analysis and Visualization with Python

Project: Netflix Data Analysis and Visualization with Python Table of Contents General Info Installation Demo Usage and Main Functionalities Contribut

Kathrin Hälbich 2 Feb 13, 2022
AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures.

AptaMAT Purpose AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures. The method is based on the compa

GEC UTC 3 Nov 03, 2022
Data cleaning tools for Business analysis

Datacleaning datacleaning tools for Business analysis This program is made for Vicky's work. You can use it, too. 数据清洗 该数据清洗工具是为了商业分析 这个程序是为了Vicky的工作而

Lin Jian 3 Nov 16, 2021
NumPy and Pandas interface to Big Data

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte

Blaze 3.1k Jan 05, 2023
Synthetic Data Generation for tabular, relational and time series data.

An Open Source Project from the Data to AI Lab, at MIT Website: https://sdv.dev Documentation: https://sdv.dev/SDV User Guides Developer Guides Github

The Synthetic Data Vault Project 1.2k Jan 07, 2023
Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python

Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python 📊

Thomas 2 May 26, 2022
ICLR 2022 Paper submission trend analysis

Visualize ICLR 2022 OpenReview Data

Jintang Li 75 Dec 06, 2022
Python beta calculator that retrieves stock and market data and provides linear regressions.

Stock and Index Beta Calculator Python script that calculates the beta (β) of a stock against the chosen index. The script retrieves the data and resa

sammuhrai 4 Jul 29, 2022
An extension to pandas dataframes describe function.

pandas_summary An extension to pandas dataframes describe function. The module contains DataFrameSummary object that extend describe() with: propertie

Mourad 450 Dec 30, 2022
Feature Detection Based Template Matching

Feature Detection Based Template Matching The classification of the photos was made using the OpenCv template Matching method. Installation Use the pa

Muhammet Erem 2 Nov 18, 2021
EOD Historical Data Python Library (Unofficial)

EOD Historical Data Python Library (Unofficial) https://eodhistoricaldata.com Installation python3 -m pip install eodhistoricaldata Note Demo API key

Michael Whittle 20 Dec 22, 2022
collect training and calibration data for gaze tracking

Collect Training and Calibration Data for Gaze Tracking This tool allows collecting gaze data necessary for personal calibration or training of eye-tr

Pascal 5 Dec 17, 2022
Convert monolithic Jupyter notebooks into Ploomber pipelines.

Soorgeon Join our community | Newsletter | Contact us | Blog | Website | YouTube Convert monolithic Jupyter notebooks into Ploomber pipelines. soorgeo

Ploomber 65 Dec 16, 2022
First steps with Python in Life Sciences

First steps with Python in Life Sciences This course material is part of the "First Steps with Python in Life Science" three-day course of SIB-trainin

SIB Swiss Institute of Bioinformatics 22 Jan 08, 2023