Scientific color maps and standardization tools

Related tags

Miscellaneousscicomap
Overview

drawing

buy me caffeine

Scientific color maps

Blog post

Scicomap Medium blog post (free)

Installation

pip install scicomap

Introduction

Scicomap is a package that provides scientific color maps and tools to standardize your favourite color maps if you don't like the built-in ones. Scicomap currently provides sequential, bi-sequential, diverging, circular, qualitative and miscellaneous color maps. You can easily draw examples, compare the rendering, see how colorblind people will perceive the color maps. I will illustrate the scicomap capabilities below.

This package is heavily based on the Event Horyzon Plot package and uses good color maps found in the the python portage of the Fabio Crameri, cmasher, palettable, colorcet and cmocean

Motivation

The accurate representation of data is essential. Many common color maps distort data through uneven colour gradients and are often unreadable to those with color-vision deficiency. An infamous example is the jet color map. These color maps do not render all the information you want to illustrate or even worse render false information through artefacts. Scientist or not, your goal is to communicate visual information in the most accurate and appealing fashion. Moreover, do not overlook colour-vision deficiency, which represents 8% of the (Caucasian) male population.

Color spaces

Perceptual uniformity is the idea that Euclidean distance between colors in color space should match human color perception distance judgements. For example, a blue and red that are at a distance d apart should look as discriminable as green and purple that are at a distance d apart. Scicomap uses the CAM02-UCS color space (Uniform Colour Space). Its three coordinates are usually denoted by J', a', and b'. And its cylindrical coordinates are J', C', and h'. The perceptual color space Jab is similar to Lab. However, Jab uses an updated color appearance model that in theory provides greater precision for discriminability measurements.

  • Lightness: also known as value or tone, is a representation of a color's brightness
  • Chroma: the intrinsic difference between a color and gray of an object
  • Hue: the degree to which a stimulus can be described as similar to or different from stimuli that are described as red, green, blue, and yellow

Encoding information

  • Lightness J': for a scalar value, intensity. It must vary linearly with the physical quantity
  • hue h' can encode an additional physical quantity, the change of hue should be linearly proportional to the quantity. The hue h' is also ideal in making an image more attractive without interfering with the representation of pixel values.
  • chroma is less recognizable and should not be used to encode physical information

Color map uniformization

Following the references and the theories, the uniformization is performed by

  • Making the color map linear in J'
  • Lifting the color map (making it lighter, i.e. increasing the minimal value of J')
  • Symmetrizing the chroma to avoid further artefacts
  • Avoid kinks and edges in the chroma curve
  • Bitonic symmetrization or not

Scicomap

Choosing the right type of color maps

Scicomap provides a bunch of color maps for different applications. The different types of color map are

import scicomap as sc
sc_map = sc.SciCoMap()
sc_map.get_ctype()
dict_keys(['diverging', 'sequential', 'multi-sequential', 'circular', 'miscellaneous', 'qualitative'])

I'll refer to the The misuse of colour in science communication for choosing the right scientific color map

Get the matplotlib cmap

plt_cmap_obj = sc_map.get_mpl_color_map()

Choosing the color map for a given type

Get the color maps for a given type

sc_map = sc.ScicoSequential()
sc_map.get_color_map_names()
dict_keys(['afmhot', 'amber', 'amber_r', 'amp', 'apple', 'apple_r', 'autumn', 'batlow', 'bilbao', 'bilbao_r', 'binary', 'Blues', 'bone', 'BuGn', 'BuPu', 'chroma', 'chroma_r', 'cividis', 'cool', 'copper', 'cosmic', 'cosmic_r', 'deep', 'dense', 'dusk', 'dusk_r', 'eclipse', 'eclipse_r', 'ember', 'ember_r', 'fall', 'fall_r', 'gem', 'gem_r', 'gist_gray', 'gist_heat', 'gist_yarg', 'GnBu', 'Greens', 'gray', 'Greys', 'haline', 'hawaii', 'hawaii_r', 'heat', 'heat_r', 'hot', 'ice', 'inferno', 'imola', 'imola_r', 'lapaz', 'lapaz_r', 'magma', 'matter', 'neon', 'neon_r', 'neutral', 'neutral_r', 'nuuk', 'nuuk_r', 'ocean', 'ocean_r', 'OrRd', 'Oranges', 'pink', 'plasma', 'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'rain', 'rainbow', 'rainbow-sc', 'rainbow-sc_r', 'rainforest', 'rainforest_r', 'RdPu', 'Reds', 'savanna', 'savanna_r', 'sepia', 'sepia_r', 'speed', 'solar', 'spring', 'summer', 'tempo', 'thermal', 'thermal_r', 'thermal-2', 'tokyo', 'tokyo_r', 'tropical', 'tropical_r', 'turbid', 'turku', 'turku_r', 'viridis', 'winter', 'Wistia', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd'])

Use a custom color map

As long as the color map is a matplotlib.colors.Colormap, matplotlib.colors.LinearSegmentedColormap or matplotlib.colors.ListedColormap object, you can pass it in the different classes.

import scicomap as sc
import matplotlib.pyplot as plt

# the thing that should not be
ugly_jet = plt.get_cmap("jet")
sc_map =  sc.ScicoMiscellaneous(cmap=ugly_jet)
f=sc_map.assess_cmap(figsize=(22,10))

Assessing a color map

In order to assess if a color map should be corrected or not, scicomap provides a way to quickly check if the lightness is linear, how asymmetric and smooth is the chroma and how the color map renders for color-deficient users. I will illustrate some of the artefacts using classical images, as the pyramid and specific functions for each kind of color map.

An infamous example

import scicomap as sc
import matplotlib.pyplot as plt

# the thing that should not be
ugly_jet = plt.get_cmap("jet")
sc_map =  sc.ScicoMiscellaneous(cmap=ugly_jet)
f=sc_map.assess_cmap(figsize=(22,10))

Clearly, the lightness is not linear, has edges and kinks. The chroma is not smooth and asymmetrical. See the below illustration to see how bad and how many artefacts the jet color map introduces

Correcting a color map

Sequential color map

Let's assess the built-in color map hawaii without correction:

sc_map = sc.ScicoSequential(cmap='hawaii')
f=sc_map.assess_cmap(figsize=(22,10))

The color map seems ok, however, the lightness is not linear and the chroma is asymmetrical even if smooth. Those small defects introduce artefact in the information rendering, as we can visualize using the following example

f=sc_map.draw_example()

We can clearly see the artefacts, especially for the pyramid for which our eyes should only pick out the corners in the pyramid (ideal situation). Those artefacts are even more striking for color-deficient users (this might not always be the case). Hopefully, scicomap provides an easy way to correct those defects:

# fixing the color map, using the same minimal lightness (lift=None), 
# not normalizing to bitone and 
# smoothing the chroma
sc_map.unif_sym_cmap(lift=None, 
                     bitonic=False, 
                     diffuse=True)

# re-assess the color map after fixing it                     
f=sc_map.assess_cmap(figsize=(22,10))

After fixing the color map, the artefacts are less present

Get the color map object

plt_cmap_obj = sc_map.get_mpl_color_map()

Diverging color map

We can perform exactly the same fix for diverging, circular, miscellaneous and qualitative color maps. Let's take a diverging color map as an illustrative example:

div_map = sc.ScicoDiverging(cmap='vanimo')
f=div_map.assess_cmap(figsize=(22,10))

the original color map is as follows

which renders as

The larger dark transition might help to distinguish the positive and negative regions but introduces artefacts (pyramids, second column panels). By correcting the color map, we remove the smooth dark transition by a sharp one and we "lift" the dark part to make it a bit brighter. Human eyes are more able to differentiate the lighter colors.

div_map = sc.ScicoDiverging(cmap='vanimo')
div_map.unif_sym_cmap(lift=25, 
                      bitonic=False, 
                      diffuse=True)
f=div_map.assess_cmap(figsize=(22,10))

which render as

Use with matplotlib

Use a corrected colormap in a matplotlib figure

import matplotlib.pyplot as plt
import matplotlib as mpl
import scicomap as sc
from scicomap.utils import _fn_with_roots

# load the color map
div_map = sc.ScicoDiverging(cmap='watermelon')

# correct the colormap
div_map.unif_sym_cmap(lift=15, 
                      bitonic=False, 
                      diffuse=True)

# get the fixed color map
fixed_cmap = div_map.get_mpl_color_map()
print(type(fixed_cmap))

# use it as you like
im = _fn_with_roots()
norm = mpl.colors.CenteredNorm()
divnorm = mpl.colors.TwoSlopeNorm(vmin=-1, vcenter=0, vmax=1.25)
fig = plt.figure(figsize=(3,3), facecolor="white")
ax = fig.add_subplot(1, 1, 1, facecolor="white")
pos = ax.imshow(im, cmap=fixed_cmap, aspect="auto", norm=divnorm)
fig.colorbar(pos, ax=ax);

Correct a matplotlib colormap

import matplotlib.pyplot as plt
import matplotlib as mpl
import scicomap as sc
from scicomap.utils import _fn_with_roots

# load the color map
mpl_cmap_obj = plt.get_cmap("PRGn")
div_map = sc.ScicoDiverging(cmap=mpl_cmap_obj)

# correct the colormap
div_map.unif_sym_cmap(lift=None, 
                      bitonic=False, 
                      diffuse=True)

# get the fixed color map
fixed_cmap = div_map.get_mpl_color_map()
print(type(fixed_cmap))

# use it as you like
im = _fn_with_roots()
norm = mpl.colors.CenteredNorm()
divnorm = mpl.colors.TwoSlopeNorm(vmin=-1, vcenter=0, vmax=1.25)
fig = plt.figure(figsize=(3,3), facecolor="white")
ax = fig.add_subplot(1, 1, 1, facecolor="white")
pos = ax.imshow(im, cmap=fixed_cmap, aspect="auto", norm=divnorm)
fig.colorbar(pos, ax=ax);

Comparing color maps

You can easily compare, raw or corrected, color maps using a picture of your choice

Color-defiency rendering

Bearing in mind that +- 8% of males are color-deficient, you can visualize the rendering of any colormap for different kind of deficiencies.

c_l =  ["cividis", "inferno", "magma", "plasma", "viridis"]
f = sc.plot_colorblind_vision(ctype='sequential', 
                              cmap_list=c_l, 
                              figsize=(30, 4), 
                              n_colors=11, 
                              facecolor="black")

Sequential color maps

The built-in picture is coming from First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole as the main part of Scicomap is built upon the EHT visualization library.

f = sc.compare_cmap(image="grmhd", 
                    ctype='sequential', 
                    ncols=15, 
                    uniformize=True, 
                    symmetrize=True, 
                    unif_kwargs={'lift': 20}, 
                    sym_kwargs={'bitonic': False, 'diffuse': True})

returning

Diverging color maps

Comparing the diverging color maps using a vortex image

f = sc.compare_cmap(image="vortex", 
                    ctype='diverging', 
                    ncols=15, 
                    uniformize=True, 
                    symmetrize=True, 
                    unif_kwargs={'lift': None}, 
                    sym_kwargs={'bitonic': False, 'diffuse': True})

Circular color maps

Comparing circular/phase color maps using a complex function

f = sc.compare_cmap(image="phase", 
                    ctype='circular', 
                    ncols=15, 
                    uniformize=True, 
                    symmetrize=True, 
                    unif_kwargs={'lift': None}, 
                    sym_kwargs={'bitonic': False, 'diffuse': True})

All the built-in color maps

Sequential

sc.plot_colormap(ctype='sequential', 
                 cmap_list='all', 
                 figsize=None, 
                 n_colors=5, 
                 facecolor="black", 
                 uniformize=True, 
                 symmetrize=False, 
                 unif_kwargs=None, 
                 sym_kwargs=None)

Diverging

Mutli-sequential

Miscellaneous

Circular

Qualitative

sc.plot_colormap(ctype='qualitative', 
                 cmap_list='all', 
                 figsize=None, 
                 n_colors=5, 
                 facecolor="black", 
                 uniformize=False, 
                 symmetrize=False, 
                 unif_kwargs=None, 
                 sym_kwargs=None)

References

Changes log

0.3

  • Add a section "how to use with matplotlib"
  • [Bug] Center diverging color map in examples

0.2

  • [Bug] Fix typo in chart titles

0.1

  • First version
You might also like...
A new mini-batch framework for optimal transport in deep generative models, deep domain adaptation, approximate Bayesian computation, color transfer, and gradient flow.

BoMb-OT Python3 implementation of the papers On Transportation of Mini-batches: A Hierarchical Approach and Improving Mini-batch Optimal Transport via

Configure request params such as text, color, size etc. And then download the image
Configure request params such as text, color, size etc. And then download the image

Configure request params such as text, color, size etc. And then download the image

A Tandy Color Computer 1, 2, and 3 assembler written in Python

CoCo Assembler and File Utility Table of Contents What is it? Requirements License Installing Assembler Assembler Usage Input File Format Print Symbol

A simple single-color identicon generator

Identicons What are identicons? Setup: git clone https://github.com/vjdad4m/identicons.git cd identicons pip3 install -r requirements.txt chmod +x

The goal of this program was to find the most common color in my living room.

The goal of this program was to find the most common color in my living room. I found a dataset online with colors names and their corr

A lighweight screen color picker tool
A lighweight screen color picker tool

tkpick A lighweigt screen color picker tool Availability Only GNU/Linux 🐧 Installing Install via pip (No auto-update): [sudo] pip install tkpick Usa

Coursework project for DIP class. The goal is to use vision to guide the Dashgo robot through two traffic cones in bright color.

Coursework project for DIP class. The goal is to use vision to guide the Dashgo robot through two traffic cones in bright color.

Convert text with ANSI color codes to HTML or to LaTeX.

Convert text with ANSI color codes to HTML or to LaTeX.

It is a Blender Tool which can convert the Object Data Attributes in face corner to the UVs or Vertex Color.

Blender_ObjectDataAttributesConvertTool It is a Blender Tool which can convert the Object Data Attributes in face corner to the UVs or Vertex Color. D

Releases(v0.4)
Owner
Thomas Bury
Physicist by passion and training, Data Scientist for a living (ok it's fun too), interdisciplinary by conviction. Human Bender for some topics.
Thomas Bury
Adam with minor modifications which give significant improvement

BAdam Modification of Adam [1] optimizer with increased stability and better performance. Tricks used: Decoupled weight decay as in AdamW [2]. Such de

19 May 11, 2022
Python Service for MISP Feed Management

Python Service for MISP Feed Management This set of scripts is designed to offer better reliability and more control over the fetching of feeds into M

Chris 7 Aug 24, 2022
Find functions without canary check (or similar)

Ghidra Check Protector Which non-trivial functions don't reference the stack canary checker (or other, user-defined function)? Place your cursor to th

buherator 3 Jan 17, 2022
qecsim is a Python 3 package for simulating quantum error correction using stabilizer codes.

qecsim qecsim is a Python 3 package for simulating quantum error correction using stabilizer codes.

44 Dec 20, 2022
Plugins for Agisoft Metashape

Данные плагины предназначены для расширения функциональных возможностей Agisoft Metashape. Плагины представляют собой отдельные программы с собственным интерфейсом, которые запускаются внутри Agisoft

GeoScan 17 Dec 10, 2022
Module 2's katas from Launch X's python introduction course.

Module2Katas Module 2's katas from Launch X's python introduction course. Virtual environment creation process (on Windows): Create a folder in any de

Javier Méndez 1 Feb 10, 2022
JARVIS PC Assistant is an assisting program to make your computer easier to use

JARVIS-PC-Assistant JARVIS PC Assistant is an assisting program to make your computer easier to use Welcome to the J.A.R.V.I.S. PC Assistant help file

Dasun Nethsara 2 Dec 02, 2022
A web-based chat application that enables multiple users to interact with one another

A web-based chat application that enables multiple users to interact with one another, in the same chat room or different ones according to their choosing.

3 Apr 22, 2022
ABT aka Animated Background Tool is a windows only python program that makes it that you can have animated background.

ABT ABT aka Animated Background Tool is a windows only python program that makes it that you can have animated background. 𝓡𝓔𝓐𝓓 𝓜𝓔, An Important

Yeeterboi4 2 Jul 16, 2022
A python script that fetches the grades of a student from a WAEC result in pdf format.

About waec-result-analyzer A python script that fetches the grades of a student from a WAEC result in pdf format. Built for federal government college

Oshodi Kolapo 2 Dec 04, 2021
A simple BrainF**k compiler written in Python

bf-comp A simple BrainF**k compiler written in Python. What else were you looking for?

1 Jan 09, 2022
Scraper pour les offres de stage Tesla et les notes sur Oasis (Polytech Paris-Saclay) sous forme de bot Discord

Scraper pour les offres de stage Tesla et les notes sur Oasis (Polytech Paris-Saclay) sous forme de bot Discord

Alexandre Malfreyt 1 Jan 21, 2022
Яндекс тренировки по алгоритмам. Июнь 2021

Young&&Yandex Тренировки по алгоритмам Если вы хотите попасть на летнюю стажировку в Яндекс, но пока не уверены в своих силах, приходите на наши трени

Podlevskiy Viktor 6 Sep 03, 2021
A script to add issues to a project in Github based on label or status.

Add Github Issues to Project (Beta) A python script to move Github issues to a next-gen (beta) Github Project Getting Started These instructions will

Kate Donaldson 3 Jan 16, 2022
Alternative StdLib for Nim for Python targets

Alternative StdLib for Nim for Python targets, hijacks Python StdLib for Nim

Juan Carlos 100 Jan 01, 2023
ASCII-Wordle - A port of the game Wordle to terminal emulators/CMD

ASCII-Wordle A 'port' of Wordle to text-based interfaces A near-feature complete

32 Jun 11, 2022
Utility/Raiding selfbot made by Shell and Roover.

Utility/Raiding selfbot made by Shell and Roover. We are open to suggestions and ideas.

Shell 2 Dec 08, 2021
Never get kicked for inactivity ever again!

FFXIV AFK Bot Tired of getting kicked from games due to inactivity? This Bot will make random movements in random intervals to prevent you from gettin

5 Jan 12, 2022
SkyPort console user terminal written in python

SkyPort terminal implemented as a console script written in Python Description Sky Port is an universal bus between user software and compute resource

Sky Workflows 1 Oct 23, 2022
Geodesic Dome Math

dome Geodesic Dome Math Python dome tool dome.py calculates an icosahedron or 2v geodesic dome and creates 3d printable hubs as OpenSCAD sources. usag

Brian Olson 2 Feb 09, 2022