SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

Overview

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

PyTorch implementation of SnapMix | paper

Method Overview

SnapMix

Cite

@inproceedings{huang2021snapmix,
    title={SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data},
    author={Shaoli Huang, Xinchao Wang, and Dacheng Tao},
    year={2021},
    booktitle={AAAI Conference on Artificial Intelligence},
}

Setup

Install Package Dependencies

torch
torchvision 
PyYAML
easydict
tqdm
scikit-learn
efficientnet_pytorch
pandas
opencv

Datasets

create a soft link to the dataset directory

CUB dataset

ln -s /your-path-to/CUB-dataset data/cub

Car dataset

ln -s /your-path-to/Car-dataset data/car

Aircraft dataset

ln -s /your-path-to/Aircraft-dataset data/aircraft

Training

Training with Imagenet pre-trained weights

1. Baseline and Baseline+

To train a model on CUB dataset using the Resnet-50 backbone,

python main.py # baseline

python main.py --midlevel # baseline+

To train model on other datasets using other network backbones, you can specify the following arguments:

--netname: name of network architectures (support 4 network families: ResNet,DenseNet,InceptionV3,EfficientNet)

--dataset: dataset name

For example,

python main.py --netname resnet18 --dataset cub # using the Resnet-18 backbone on CUB dataset

python main.py --netname efficientnet-b0 --dataset cub # using the EfficientNet-b0 backbone on CUB dataset

python main.py --netname inceptoinV3 --dataset aircraft # using the inceptionV3 backbone on Aircraft dataset

2. Training with mixing augmentation

Applying SnapMix in training ( we used the hyperparameter values (prob=1., beta=5) for SnapMix in most of the experiments.):

python main.py --mixmethod snapmix --beta 5 --netname resnet50 --dataset cub # baseline

python main.py --mixmethod snapmix --beta 5 --netname resnet50 --dataset cub --midlevel # baseline+

Applying other augmentation methods (currently support cutmix,cutout,and mixup) in training:

python main.py --mixmethod cutmix --beta 3 --netname resnet50 --dataset cub # training with CutMix

python main.py --mixmethod mixup --prob 0.5 --netname resnet50 --dataset cub # training with MixUp

3. Results

ResNet architecture.

Backbone Method CUB Car Aircraft
Resnet-18 Baseline 82.35% 91.15% 87.80%
Resnet-18 Baseline + SnapMix 84.29% 93.12% 90.17%
Resnet-34 Baseline 84.98% 92.02% 89.92%
Resnet-34 Baseline + SnapMix 87.06% 93.95% 92.36%
Resnet-50 Baseline 85.49% 93.04% 91.07%
Resnet-50 Baseline + SnapMix 87.75% 94.30% 92.08%
Resnet-101 Baseline 85.62% 93.09% 91.59%
Resnet-101 Baseline + SnapMix 88.45% 94.44% 93.74%
Resnet-50 Baseline+ 87.13% 93.80% 91.68%
Resnet-50 Baseline+ + SnapMix 88.70% 95.00% 93.24%
Resnet-101 Baseline+ 87.81% 93.94% 91.85%
Resnet-101 Baseline+ + SnapMix 89.32% 94.84% 94.05%

InceptionV3 architecture.

Backbone Method CUB
InceptionV3 Baseline 82.22%
InceptionV3 Baseline + SnapMix 85.54%

DenseNet architecture.

Backbone Method CUB
DenseNet121 Baseline 84.23%
DenseNet121 Baseline + SnapMix 87.42%

Training from scratch

To train a model without using ImageNet pretrained weights:

python main.py --mixmethod snapmix --prob 0.5 --netname resnet18 --dataset cub --pretrained 0 # resnet-18 backbone

python main.py --mixmethod snapmix --prob 0.5 --netname resnet50 --dataset cub --pretrained 0 # resnet-50 backbone

2. Results

Backbone Method CUB
Resnet-18 Baseline 64.98%
Resnet-18 Baseline + SnapMix 70.31%
Resnet-50 Baseline 66.92%
Resnet-50 Baseline + SnapMix 72.17%
Owner
DavidHuang
DavidHuang
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Autotype on websites that have copy-paste disabled like Moodle, HackerEarth contest etc.

Autotype A quick and small python script that helps you autotype on websites that have copy paste disabled like Moodle, HackerEarth contests etc as it

Tushar 32 Nov 03, 2022
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
An Implementation of Fully Convolutional Networks in Tensorflow.

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

Marvin Teichmann 1.1k Dec 12, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
HyDiff: Hybrid Differential Software Analysis

HyDiff: Hybrid Differential Software Analysis This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential

Yannic Noller 22 Oct 20, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022