Imutils - A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

Overview

imutils

A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and both Python 2.7 and Python 3.

For more information, along with a detailed code review check out the following posts on the PyImageSearch.com blog:

Installation

Provided you already have NumPy, SciPy, Matplotlib, and OpenCV already installed, the imutils package is completely pip-installable:

$ pip install imutils

Finding function OpenCV functions by name

OpenCV can be a big, hard to navigate library, especially if you are just getting started learning computer vision and image processing. The find_function method allows you to quickly search function names across modules (and optionally sub-modules) to find the function you are looking for.

Example:

Let's find all function names that contain the text contour:

import imutils
imutils.find_function("contour")

Output:

1. contourArea
2. drawContours
3. findContours
4. isContourConvex

The contourArea function could therefore be accessed via: cv2.contourArea

Translation

Translation is the shifting of an image in either the x or y direction. To translate an image in OpenCV you would need to supply the (x, y)-shift, denoted as (tx, ty) to construct the translation matrix M:

Translation equation

And from there, you would need to apply the cv2.warpAffine function.

Instead of manually constructing the translation matrix M and calling cv2.warpAffine, you can simply make a call to the translate function of imutils.

Example:

# translate the image x=25 pixels to the right and y=75 pixels up
translated = imutils.translate(workspace, 25, -75)

Output:

Translation example

Rotation

Rotating an image in OpenCV is accomplished by making a call to cv2.getRotationMatrix2D and cv2.warpAffine. Further care has to be taken to supply the (x, y)-coordinate of the point the image is to be rotated about. These calculation calls can quickly add up and make your code bulky and less readable. The rotate function in imutils helps resolve this problem.

Example:

# loop over the angles to rotate the image
for angle in xrange(0, 360, 90):
	# rotate the image and display it
	rotated = imutils.rotate(bridge, angle=angle)
	cv2.imshow("Angle=%d" % (angle), rotated)

Output:

Rotation example

Resizing

Resizing an image in OpenCV is accomplished by calling the cv2.resize function. However, special care needs to be taken to ensure that the aspect ratio is maintained. This resize function of imutils maintains the aspect ratio and provides the keyword arguments width and height so the image can be resized to the intended width/height while (1) maintaining aspect ratio and (2) ensuring the dimensions of the image do not have to be explicitly computed by the developer.

Another optional keyword argument, inter, can be used to specify interpolation method as well.

Example:

# loop over varying widths to resize the image to
for width in (400, 300, 200, 100):
	# resize the image and display it
	resized = imutils.resize(workspace, width=width)
	cv2.imshow("Width=%dpx" % (width), resized)

Output:

Resizing example

Skeletonization

Skeletonization is the process of constructing the "topological skeleton" of an object in an image, where the object is presumed to be white on a black background. OpenCV does not provide a function to explicitly construct the skeleton, but does provide the morphological and binary functions to do so.

For convenience, the skeletonize function of imutils can be used to construct the topological skeleton of the image.

The first argument, size is the size of the structuring element kernel. An optional argument, structuring, can be used to control the structuring element -- it defaults to cv2.MORPH_RECT , but can be any valid structuring element.

Example:

# skeletonize the image
gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
skeleton = imutils.skeletonize(gray, size=(3, 3))
cv2.imshow("Skeleton", skeleton)

Output:

Skeletonization example

Displaying with Matplotlib

In the Python bindings of OpenCV, images are represented as NumPy arrays in BGR order. This works fine when using the cv2.imshow function. However, if you intend on using Matplotlib, the plt.imshow function assumes the image is in RGB order. A simple call to cv2.cvtColor will resolve this problem, or you can use the opencv2matplotlib convenience function.

Example:

# INCORRECT: show the image without converting color spaces
plt.figure("Incorrect")
plt.imshow(cactus)

# CORRECT: convert color spaces before using plt.imshow
plt.figure("Correct")
plt.imshow(imutils.opencv2matplotlib(cactus))
plt.show()

Output:

Matplotlib example

URL to Image

This the url_to_image function accepts a single parameter: the url of the image we want to download and convert to a NumPy array in OpenCV format. This function performs the download in-memory. The url_to_image function has been detailed here on the PyImageSearch blog.

Example:

url = "http://pyimagesearch.com/static/pyimagesearch_logo_github.png"
logo = imutils.url_to_image(url)
cv2.imshow("URL to Image", logo)
cv2.waitKey(0)

Output:

Matplotlib example

Checking OpenCV Versions

OpenCV 3 has finally been released! But with the major release becomes backward compatibility issues (such as with the cv2.findContours and cv2.normalize functions). If you want your OpenCV 3 code to be backwards compatible with OpenCV 2.4.X, you'll need to take special care to check which version of OpenCV is currently being used and then take appropriate action. The is_cv2() and is_cv3() are simple functions that can be used to automatically determine the OpenCV version of the current environment.

Example:

print("Your OpenCV version: {}".format(cv2.__version__))
print("Are you using OpenCV 2.X? {}".format(imutils.is_cv2()))
print("Are you using OpenCV 3.X? {}".format(imutils.is_cv3()))

Output:

Your OpenCV version: 3.0.0
Are you using OpenCV 2.X? False
Are you using OpenCV 3.X? True

Automatic Canny Edge Detection

The Canny edge detector requires two parameters when performing hysteresis. However, tuning these two parameters to obtain an optimal edge map is non-trivial, especially when working with a dataset of images. Instead, we can use the auto_canny function which uses the median of the grayscale pixel intensities to derive the upper and lower thresholds. You can read more about the auto_canny function here.

Example:

gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
edgeMap = imutils.auto_canny(gray)
cv2.imshow("Original", logo)
cv2.imshow("Automatic Edge Map", edgeMap)

Output:

Matplotlib example

4-point Perspective Transform

A common task in computer vision and image processing is to perform a 4-point perspective transform of a ROI in an image and obtain a top-down, "birds eye view" of the ROI. The perspective module takes care of this for you. A real-world example of applying a 4-point perspective transform can be bound in this blog on on building a kick-ass mobile document scanner.

Example

See the contents of demos/perspective_transform.py

Output:

Matplotlib example

Sorting Contours

The contours returned from cv2.findContours are unsorted. By using the contours module the the sort_contours function we can sort a list of contours from left-to-right, right-to-left, top-to-bottom, and bottom-to-top, respectively.

Example:

See the contents of demos/sorting_contours.py

Output:

Matplotlib example

(Recursively) Listing Paths to Images

The paths sub-module of imutils includes a function to recursively find images based on a root directory.

Example:

Assuming we are in the demos directory, let's list the contents of the ../demo_images:

from imutils import paths
for imagePath in paths.list_images("../demo_images"):
	print imagePath

Output:

../demo_images/bridge.jpg
../demo_images/cactus.jpg
../demo_images/notecard.png
../demo_images/pyimagesearch_logo.jpg
../demo_images/shapes.png
../demo_images/workspace.jpg
Owner
PyImageSearch
Computer vision and deep learning
PyImageSearch
Anaglyph 3D Converter - A python script that adds a 3D anaglyph style effect to an image using the Pillow image processing package.

Anaglyph 3D Converter - A python script that adds a 3D anaglyph style effect to an image using the Pillow image processing package.

Kizdude 2 Jan 22, 2022
Javascript image annotation tool based on image segmentation.

JS Segment Annotator Javascript image annotation tool based on image segmentation. Label image regions with mouse. Written in vanilla Javascript, with

Kota Yamaguchi 513 Nov 15, 2022
An add to make adding screenshots and copied images to the scene easy

Blender Clipboard to Scene It doesn't work with version 2.93 and higher (I tested it on 2.91 and 2.83) There is an issue with importing the Pillow mod

Mohammad Mehdi Afkhami 3 Dec 29, 2021
thumbor is an open-source photo thumbnail service by globo.com

Survey If you use thumbor, please take 1 minute and answer this survey? It's only 2 questions and one is multiple choice!!! thumbor is a smart imaging

Thumbor (by @globocom) 9.3k Dec 31, 2022
MaryJane is a simple MJPEG server written in Python.

MaryJane is a simple MJPEG server written in Python.

bootrino 152 Dec 13, 2022
This Web App lets you convert your Normal Image to a SKETCHED one within a minute

This Web App lets you convert your Normal Image to a SKETCHED one within a minute

Avinash M 25 Nov 10, 2022
TRREASURE_IMAGE is python lib by which you can hide anything in a .jpg image with Command-Line Interface[cli] feature

TRREASURE_IMAGE TRREASURE_IMAGE is a python third-party library with Command-Line Interface[cli] feature. Table of Contents General Info Python librar

Fatin Shadab 3 Jun 07, 2022
An esoteric visual language that takes image files as input based on a multi-tape turing machine, designed for compatibility with C.

vizh An esoteric visual language that takes image files as input based on a multi-tape turing machine, designed for compatibility with C. Overview Her

Sy Brand 228 Dec 17, 2022
Craft PNG files that appear completely different in Apple software

Ambiguous PNG Packer Craft PNG files that appear completely different in Apple software

David Buchanan 1k Dec 29, 2022
Python implementation of image filters (such as brightness, contrast, saturation, etc.)

PyPhotoshop Python implementation of image filters Use Python to adjust brightness and contrast, add blur, and detect edges! Follow along tutorial: ht

Kylie 87 Dec 15, 2022
Computer art based on quadtrees.

Quads Computer art based on quadtrees. The program targets an input image. The input image is split into four quadrants. Each quadrant is assigned an

Michael Fogleman 1.1k Dec 23, 2022
QSIprep: Preprocessing and analysis of q-space images

QSIprep: Preprocessing and analysis of q-space images Full documentation at https://qsiprep.readthedocs.io About qsiprep configures pipelines for proc

Lifespan Informatics and Neuroimaging Center 88 Dec 15, 2022
Nutrify - take a photo of food and learn about it

Nutrify - take a photo of food and learn about it Work in progress. To make this a thing, we're going to need lots of food images... Start uploading y

Daniel Bourke 93 Dec 30, 2022
Bringing vtk.js into Dash and Python

Dash VTK Dash VTK lets you integrate the vtk.js visualization pipeline directly into your Dash app. It is powered by react-vtk-js. Docs Demo Explorer

Plotly 88 Nov 29, 2022
PIX is an image processing library in JAX, for JAX.

PIX PIX is an image processing library in JAX, for JAX. Overview JAX is a library resulting from the union of Autograd and XLA for high-performance ma

DeepMind 294 Jan 08, 2023
Napari simpleitk image processing

napari-simpleitk-image-processing (n-SimpleITK) Process images using SimpleITK in napari Usage Filters of this napari plugin can be found in the Tools

Robert Haase 11 Dec 19, 2022
A Toolbox for Image Feature Matching and Evaluations

This is a toolbox repository to help evaluate various methods that perform image matching from a pair of images.

Qunjie Zhou 342 Dec 29, 2022
【萝莉图片算法】高损图像压缩算法!?

【萝莉图片算法】高损图像压缩算法!? 我又发明出新算法了! 这次我发明的是新型高损图像压缩算法——萝莉图片算法!为什么是萝莉图片,这是因为它是使动用法,让图片变小所以是萝莉图片,大家一定要学好语文哦! 压缩效果 太神奇了!压缩率竟然高达99.97%! 与常见压缩算法对比 在图片最终大小为1KB的情况

黄巍 49 Oct 17, 2022
MyPaint is a simple drawing and painting program that works well with Wacom-style graphics tablets.

MyPaint A fast and dead-simple painting app for artists Features Infinite canvas Extremely configurable brushes Distraction-free fullscreen mode Exten

MyPaint 2.3k Jan 01, 2023
A large-scale dataset of both raw MRI measurements and clinical MRI images

fastMRI is a collaborative research project from Facebook AI Research (FAIR) and NYU Langone Health to investigate the use of AI to make MRI scans faster. NYU Langone Health has released fully anonym

Facebook Research 907 Jan 04, 2023