This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

Overview

pyLiDAR-SLAM

This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated and compared on a set of public Datasets.

It heavily relies on omegaconf and hydra, which allows us to easily test the different modules and parameters with few but structured configuration files.

This is a research project provided "as-is" without garanties, use at your own risk. It is actively used for Kitware Vision team internal research thus is likely to be heavily extended, rewritten (and hopefully improved) in a near future.

Overview

KITTI Sequence 00 with pyLiDAR-SLAM

pyLIDAR-SLAM is designed to be modular, multiple components are implemented at each stage of the pipeline. Its modularity can make it a bit complicated to use. We provide this wiki to help you navigate it. If you have any questions, do not hesitate raising issues.

The documentation is organised as follows:

  • INSTALLATION: Describes how to install pyLiDAR-SLAM and its different components
  • DATASETS: Describes the different datasets integrated in pyLiDAR-SLAM, and how to install them
  • TOOLBOX: Describes the contents of the toolbox and the different modules proposed
  • BENCHMARK: Describes the benchmarks supported in the Dataset /!\ Note: This section is still in construction

The goal for the future is to gradually add functionalities to pyLIDAR-SLAM (Loop Closure, Motion Segmentation, Multi-Sensors, etc...).

News

[08/10/2021]: We also introduce support for individual rosbags (Introducing naturally an overhead compared to using ROS directly, but provides the flexibility of pyLiDAR-SLAM)

[08/10/2021]: We release code for Loop Closure with pyLiDAR-SLAM accompanied with a simple PoseGraph Optimization.

[08/10/2021]: We release our new work on arXiv. It proposes a new state-of-the-art pure LiDAR odometry implemented in C++ (check the project main page). python wrappings are available, and it can be used with pyLiDAR-SLAM.

Installation

See the wiki page INSTALLATION for instruction to install the code base and the modules you are interested in.

DATASETS

pyLIDAR-SLAM incorporates different datasets, see DATASETS for installation and setup instructions for each of these datasets. Only the datasets implemented in pyLIDAR-SLAM are compatible with hydra's mode and the scripts run.py and train.py.

But you can define your own datasets by extending the class DatasetLoader.

New: We support individual rosbags (without requiring a complete ROS installation). See the minimal example for more details.

A Minimal Example

Download a rosbag (e.g. From Rosbag Cartographer): example_rosbag

Note: You need the rosbag python module installed to run this example (see INSTALLATION for instructions)

Launch the SLAM:

python3 run.py num_workers=1 /          # The number of process workers to load the dataset (should be at most 1 for a rosbag)
    slam/initialization=NI /            # The initialization considered (NI=No Initialization / CV=Constant Velocity, etc...)
    slam/preprocessing=grid_sample /    # Preprocessing on the point clouds
    slam/odometry=icp_odometry /        # The Odometry algorithm
    slam.odometry.viz_debug=True /      # Whether to launch the visualization of the odometry
    slam/loop_closure=none /            # The loop closure algorithm selected (none by default)
    slam/backend=none /                 # The backend algorithm (none by default)
    dataset=rosbag /                    # The dataset selected (a simple rosbag here)
    dataset.main_topic=horizontal_laser_3d /    # The pointcloud topic of the rosbag 
    dataset.accumulate_scans=True /             # Whether to accumulate multiple messages (a sensor can return multiple scans lines or an accumulation of scans) 
    dataset.file_path=
   
    /b3-2016-04-05-15-51-36.bag / #  The path to the rosbag file 
    hydra.run.dir=.outputs/TEST_DOC   #  The log directory where the trajectory will be saved

   

This will output the trajectory, log files (including the full config) on disk at location .outputs/TEST_DOC.

Our minimal LiDAR Odometry, is actually a naïve baseline implementation, which is mostly designed and tested on driving datasets (see the KITTI benchmark). Thus in many cases it will fail, be imprecise or too slow.

We recommend you install the module pyct_icp from our recent work, which provides a much more versatile and precise LiDAR-Odometry.

See the wiki page INSTALLATION for more details on how to install the different modules. If you want to visualize in real time the quality of the SLAM, consider also installing the module pyviz3d.

Once pyct_icp is installed, you can modify the command line above:

python3 run.py num_workers=1 /          
    slam/initialization=NI /            
    slam/preprocessing=none /    
    slam/odometry=ct_icp_robust_shaky / # The CT-ICP algorithm for shaky robot sensor (here it is for a backpack) 
    slam.odometry.viz_debug=True /      
    slam/loop_closure=none /            
    slam/backend=none /                 
    dataset=rosbag /                    
    dataset.main_topic=horizontal_laser_3d /    
    dataset.accumulate_scans=True /             
    dataset.file_path=
   
    /b3-2016-04-05-15-51-36.bag / 
    hydra.run.dir=.outputs/TEST_DOC   

   

It will launch pyct_icp on the same rosbag (running much faster than our python based odometry)

With pyviz3d you should see the following reconstruction (obtained by a backpack mounting the stairs of a museum):

Minimal Example

More advanced examples / Motivation

pyLiDAR-SLAM will progressively include more and more modules, to build more powerful and more accessible LiDAR odometries.

For a more detailed / advanced usage of the toolbox please refer to our documentation in the wiki HOME.

The motivation behind the toolbox, is really to compare different modules, hydra is very useful for this purpose.

For example the script below launches consecutively the pyct_icp and icp_odometry odometries on the same datasets.

python3 run.py -m /             # We specify the -m option to tell hydra to perform a sweep (or grid search on the given arguments)
    num_workers=1 /          
    slam/initialization=NI /            
    slam/preprocessing=none /    
    slam/odometry=ct_icp_robust_shaky, icp_odometry /   # The two parameters of the grid search: two different odometries
    slam.odometry.viz_debug=True /      
    slam/loop_closure=none /            
    slam/backend=none /                 
    dataset=rosbag /                    
    dataset.main_topic=horizontal_laser_3d /    
    dataset.accumulate_scans=True /             
    dataset.file_path=
   
    /b3-2016-04-05-15-51-36.bag / 
    hydra.run.dir=.outputs/TEST_DOC   

   

Benchmarks

We use this functionality of pyLIDAR-SLAM to compare the performances of its different modules on different datasets. In Benchmark we present the results of pyLIDAR-SLAM on the most popular open-source datasets.

Note this work in still in construction, and we aim to improve it and make it more extensive in the future.

Research results

Small improvements will be regularly made to pyLiDAR-SLAM, However major changes / new modules will more likely be introduced along research articles (which we aim to integrate with this project in the future)

Please check RESEARCH to see the research papers associated to this work.

System Tested

OS CUDA pytorch python hydra
Ubuntu 18.04 10.2 1.7.1 3.8.8 1.0

Author

This is a work realised in the context of Pierre Dellenbach PhD thesis under supervision of Bastien Jacquet (Kitware), Jean-Emmanuel Deschaud & François Goulette (Mines ParisTech).

Cite

If you use this work for your research, consider citing:

@misc{dellenbach2021s,
      title={What's in My LiDAR Odometry Toolbox?},
      author={Pierre Dellenbach, 
      Jean-Emmanuel Deschaud, 
      Bastien Jacquet,
      François Goulette},
      year={2021},
}
Owner
Kitware, Inc.
Kitware develops software for web visualization, data storage, build system generation, infovis, media analysis, biomedical inquiry, cloud computing and more.
Kitware, Inc.
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

Couler What is Couler? Couler aims to provide a unified interface for constructing and managing workflows on different workflow engines, such as Argo

Couler Project 781 Jan 03, 2023
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
Demo project for real time anomaly detection using kafka and python

kafkaml-anomaly-detection Project for real time anomaly detection using kafka and python It's assumed that zookeeper and kafka are running in the loca

Rodrigo Arenas 36 Dec 12, 2022
A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
Proof of concept GnuCash Webinterface

Proof of Concept GnuCash Webinterface This may one day be a something truly great. Milestones [ ] Browse accounts and view transactions [ ] Record sim

Josh 14 Dec 28, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
Text Extraction Formulation + Feedback Loop for state-of-the-art WSD (EMNLP 2021)

ConSeC is a novel approach to Word Sense Disambiguation (WSD), accepted at EMNLP 2021. It frames WSD as a text extraction task and features a feedback loop strategy that allows the disambiguation of

Sapienza NLP group 36 Dec 13, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022