[email protected] Reverb Database. | PythonRepo" /> [email protected] Reverb Database. | PythonRepo">

The purpose of this code base is to add a specified signal-to-noise ratio noise from MUSAN dataset to a pure speech signal and to generate far-field speech data using room impulse response data from BUT [email protected] Reverb Database.

Overview

Add_noise_and_rir_to_speech

The purpose of this code base is to add a specified signal-to-noise ratio noise from MUSAN dataset to a pure speech signal and to generate far-field speech data using room impulse response data from BUT [email protected] Reverb Database.

Noise and RIR dataset description:

  • BUT [email protected] Reverb Database:

    The database is being built with respect to collect a large number of various Room Impulse Responses, Room environmental noises (or "silences"), Retransmitted speech (for ASR and SID testing), and meta-data (positions of microphones, speakers etc.).

    The goal is to provide speech community with a dataset for data enhancement and distant microphone or microphone array experiments in ASR and SID.

    In this codebase, we only use the RIR data, which is used to synthesize far-field speech, the composition of the RIR dataset and citation details are as follows.

    Room Name Room Type Size (length, depth, height) (m) (microphone_num x loudspeaker_num)
    Q301 Office 10.7x6.9x2.6 31 x 3
    L207 Office 4.6x6.9x3.1 31 x 6
    L212 Office 7.5x4.6x3.1 31 x 5
    L227 Stairs 6.2x2.6x14.2 31 x 5
    R112 Hotel room 4.4x2.8x2.6 31 x 5
    CR2 Conference room 28.2x11.1x3.3 31 x 4
    E112 Lecture room 11.5x20.1x4.8 31 x 2
    D105 Lecture room 17.2x22.8x6.9 31 x 6
    C236 Meeting room 7.0x4.1x3.6 31 x 10
    @ARTICLE{8717722,
             author={Szöke, Igor and Skácel, Miroslav and Mošner, Ladislav and Paliesek, Jakub and Černocký, Jan},
             journal={IEEE Journal of Selected Topics in Signal Processing}, 
             title={Building and evaluation of a real room impulse response dataset}, 
             year={2019},
             volume={13},
             number={4},
             pages={863-876},
             doi={10.1109/JSTSP.2019.2917582}
     }
    
  • MUSAN database:

    The database consists of music from several genres, speech from twelve languages, and a wide assortment of technical and non-technical noises and we only use the noise data in this database. Citation details are as follows.

    @misc{snyder2015musan,
          title={MUSAN: A Music, Speech, and Noise Corpus}, 
          author={David Snyder and Guoguo Chen and Daniel Povey},
          year={2015},
          eprint={1510.08484},
          archivePrefix={arXiv},
          primaryClass={cs.SD}
    }
    

Before using the data-processing code:

  • If you do not want the original dataset to be overwritten, please download the dataset again for use

  • You need to create three files: 'training_list.txt', 'validation_list.txt', 'testing_list.txt', based on your training, validation and test data file paths respectively, and ensure the audio in the file paths can be read and written.

  • The content of the aforementioned '*_list.txt' files are in the following form:

    *_list.txt
    	/../...../*.wav
    	/../...../*.wav
    	/../...../*.wav
    

Instruction for using the following data-processing code:

  1. mix_cleanaudio_with_rir_offline.py: Generate far-field speech offline

    • two parameters are needed:

      • --data_root: the data path which you want to download and store the RIR dataset in.
      • --clean_data_list_path: the path of the folder in which 'training_list.txt', 'validation_list.txt', 'testing_list.txt' are stored in
    • 2 folders will be created in data_root: 'ReverDB_data (Removable if needed)', 'ReverDB_mix'

  2. download_and_extract_noise_file.py: Generate musan noise file

    • one parameters are needed:
      • --data_root: the data path which you want to download and store the noise dataset in.
    • 2 folder will be created in data_root: 'musan (Removable if needed)', 'noise'
  3. vad_torch.py: Voice activity detection when adding noise to the speech

    The noise data is usually added online according to the SNR requirements, several pieces of code are provided below, please add them in the appropriate places according to your needs!

    import torchaudio
    import numpy as np
    import torch
    import random
    from vad_torch import VoiceActivityDetector
    
    
    def _add_noise(speech_sig, vad_duration, noise_sig, snr):
        """add noise to the audio.
        :param speech_sig: The input audio signal (Tensor).
        :param vad_duration: The length of the human voice (int).
        :param noise_sig: The input noise signal (Tensor).
        :param snr: the SNR you want to add (int).
        :returns: noisy speech sig with specific snr.
        """
        if vad_duration != 0:
            snr = 10**(snr/10.0)
            speech_power = torch.sum(speech_sig**2)/vad_duration
            noise_power = torch.sum(noise_sig**2)/noise_sig.shape[1]
            noise_update = noise_sig / torch.sqrt(snr * noise_power/speech_power)
    
            if speech_sig.shape[1] > noise_update.shape[1]:
                # padding
                temp_wav = torch.zeros(1, speech_sig.shape[1])
                temp_wav[0, 0:noise_update.shape[1]] = noise_update
                noise_update = temp_wav
            else:
                # cutting
                noise_update = noise_update[0, 0:speech_sig.shape[1]]
    
            return noise_update + speech_sig
        
        else:
            return speech_sig
        
    def main():
        # loading speech file
        speech_file = './speech.wav'
    	waveform, sr = torchaudio.load(speech_file)
    	waveform = waveform - waveform.mean()
    	
        # loading noise file and set snr
    	snr = 0       
    	noise_file = random.randint(1, 930)
    	
        # Voice activity detection
    	v = VoiceActivityDetector(waveform, sr)
    	raw_detection = v.detect_speech()
    	speech_labels = v.convert_windows_to_readible_labels(raw_detection)
    	vad_duration = 0
        if not len(speech_labels) == 0:
            for i in range(len(speech_labels)):
                start = speech_labels[i]['speech_begin']
                end = speech_labels[i]['speech_end']
                vad_duration = vad_duration + end-start
                
    	# adding noise
        noise, _ = torchaudio.load('/notebooks/noise/' + str(noise_file) + '.wav')
        waveform = _add_noise(waveform, vad_duration, noise, snr)
    
    if __name__ == '__main__':
        main()
Owner
Yunqi Chen
3rd-year undergraduate student; Passionate about all kinds of sports and everything interesting!
Yunqi Chen
my own python useful functions

PythonToolKit Motivation This Repo should help save time for data scientists' daily work regarding the Time Series regression task by providing functi

Kai 2 Oct 01, 2022
Birthday program - A program that lookups a birthday txt file and compares to the current date to check for birthdays

Birthday Program This is a program that lookups a birthday txt file and compares

Daquiver 4 Feb 02, 2022
Howell County, Missouri, COVID-19 data and (unofficial) estimates

COVID-19 in Howell County, Missouri This repository contains the daily data files used to generate my COVID-19 dashboard for Howell County, Missouri,

Jonathan Thornton 0 Jun 18, 2022
Pyfetch - Simple Fetch written in Python

pyfetch Simple Fetch written in Python Screenshots Install Clone this repository

2 Sep 02, 2022
Semantic Data Management - Property Graphs 📈

SDM - Lab 1 @ UPC 👨🏻‍💻 Table of contents Introduction Property Graph Dataset 1. Introduction This repo is all about what we have done in SDM lab 1

Mohammad Zain Abbas 1 Mar 20, 2022
Exercise to teach a newcomer to the CLSP grid to set up their environment and run jobs

Exercise to teach a newcomer to the CLSP grid to set up their environment and run jobs

Alexandra 2 May 18, 2022
a pull switch (or BYO button) that gets you out of video calls, quick

zoomout a pull switch (or BYO button) that gets you out of video calls, quick. As seen on Twitter System compatibility Tested on macOS Catalina (10.15

Brian Moore 422 Dec 30, 2022
It is a Blender Tool which can convert the Object Data Attributes in face corner to the UVs or Vertex Color.

Blender_ObjectDataAttributesConvertTool It is a Blender Tool which can convert the Object Data Attributes in face corner to the UVs or Vertex Color. D

Takeshi Chō 2 Jan 08, 2022
Demo Python project using Conda and Poetry

Conda Poetry This is a demonstration of how Conda and Poetry can be used in a Python project for dev dependency management and production deployment.

Ryan Allen 2 Apr 26, 2022
Med to csv - A simple way to parse MedAssociate output file in tidy data

MedAssociates to CSV file A simple way to parse MedAssociate output file in tidy

Jean-Emmanuel Longueville 5 Sep 09, 2022
Earth centric orbit propagation tool. Built from scratch in python.

Orbit-Propogator Earth centric orbit propagation tool. Built from scratch in python. Functionality includes: tracking sattelite location over time plo

Adam Klein 1 Mar 13, 2022
Canim1 - Simple python tool to search for packages without m1 wheels in poetry lockfiles

canim1 Usage Clone the repo. Run poetry install. Then you can use the tool: ❯ po

Korijn van Golen 1 Jan 25, 2022
A one place destination to check whatever is trending on the top social and news websites at present.

UpTrend A one place destination to check whatever is trending on the top social and news websites at present. Explore the docs » View Demo · Report Bu

Google Developer Student Clubs - JGEC 10 Oct 03, 2021
Anki cards generator for Leetcode

Leetcode Anki card generator Summary By running this script you'll be able to generate Anki cards with all the leetcode problems. I personally use it

Pavel Safronov 150 Dec 25, 2022
Convert long numbers into a human-readable format in Python

Convert long numbers into a human-readable format in Python

Alex Zaitsev 73 Dec 28, 2022
Visualization of COVID-19 Omicron wave data in Seoul, Osaka, Tokyo, Hong Kong and Shanghai. 首尔、大阪、东京、香港、上海由新冠病毒 Omicron 变异株引起的本轮疫情数据可视化分析。

COVID-19 in East Asian Megacities This repository holds original Python code for processing and visualization COVID-19 data in East Asian megacities a

STONE 10 May 18, 2022
一个IDA脚本,可以检测出哈希算法(无论是否魔改常数)并生成frida hook 代码。

findhash 在哈希算法上,比Findcrypt更好的检测工具,同时生成Frida hook代码。 使用方法 把findhash.xml和findhash.py扔到ida plugins目录下 ida -edit-plugin-findhash 试图解决的问题 哈希函数的初始化魔数被修改 想快速

266 Dec 29, 2022
Boot.img patcher for Tolino ebook readers to enable ADB and root.

I'm not responsible for any damage to your devices by running this tool. Please note that you may loose warranty when using this, although (This is no

Aaron Dewes 9 Nov 13, 2022
Uma moeda simples e segura!

SecCoin - Documentação A SecCoin foi criada com intuito de ser uma moeda segura, de fácil investimento e mineração. A Criptomoeda está na sua primeira

Sec-Coin Team 5 Dec 09, 2022
Huggingface package for the discrete VAE used for DALL-E.

DALL-E-Tokenizer Huggingface package for the discrete VAE used for DALL-E.

MyungHoon Jin 5 Sep 01, 2021