To effectively detect the faulty wafers

Overview

wafer_fault_detection

Aim of the project:

In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as crystalline silicon (c-Si), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The wafer serves as the substrate for microelectronic devices built in and upon the wafer. The project aims to successfully identify the state of the provided wafer by classifying it between one of the two-class +1 (good, can be used as a substrate) or -1 (bad, the substrate need to be replaced). In this regard, a training dataset is provided to build a machine learning classification model, which can predict the wafer quality.

Data Description:

The columns of provided data can be classified into 3 parts: wafer name, sensor values and label. The wafer name contains the batch number of the wafer, whereas the sensor values obtained from the measurement carried out on the wafer. The label column contains two unique values +1 and -1 that identifies if the wafer is good or need to be replaced. Additionally, we also require a schema file, which contains all the relevant information about the training files such as file names, length of date value in the file name, length of time value in the file name, number of columns, name of the columns, and their datatype.

Directory creation:

All the necessary folders were created to effectively separate the files so that the end-user can get easy access to them.

Data Validation:

In this step, we matched our dataset with the provided schema file to match the file names, the number of columns it should contain, their names as well as their datatype. If the files matched with the schema values, then it is considered a good file on which we can train or predict our model, if not then the files are considered as bad and moved to the bad folder. Moreover, we also identify the columns with null values. If the whole column data is missing then we also consider the file as bad, on the contrary, if only a fraction of data in a column is missing then we initially fill it with NaN and consider it as good data.

Data Insertion in Database:

First, we create a database with the given name passed. If the database is already created, open the connection to the database. A table with the name- "train_good_raw_dt" or "pred_good_raw_dt" is created in the database, based on training or prediction, for inserting the good data files obtained from the data validation step. If the table is already present, then the new table is not created, and new files are inserted in the already present table as we want training to be done on new as well as old training files. In the end, the data in a stored database is exported as a CSV file to be used for model training.

Data Pre-processing and Model Training:

In the training section, first, the data is checked for the NaN values in the columns. If present, impute the NaN values using the KNN imputer. The column with zero standard deviation was also identified and removed as they don't give any information during model training. A prediction schema was created based on the remained dataset columns. Afterwards, the KMeans algorithm is used to create clusters in the pre-processed data. The optimum number of clusters is selected by plotting the elbow plot, and for the dynamic selection of the number of clusters, we are using the "KneeLocator" function. The idea behind clustering is to implement different algorithms to train data in different clusters. The Kmeans model is trained over pre-processed data and the model is saved for further use in prediction. After clusters are created, we find the best model for each cluster. We are using four algorithms, "Random Forest" “K Neighbours”, “Logistic Regression” and "XGBoost". For each cluster, both the algorithms are passed with the best parameters derived from GridSearch. We calculate the AUC scores for both models and select the model with the best score. Similarly, the best model is selected for each cluster. All the models for every cluster are saved for use in prediction. In the end, the confusion matrix of the model associated with every cluster is also saved to give a glance at the performance of the models.

Prediction:

In data prediction, first, the essential directories are created. The data validation, data insertion and data processing steps are similar to the training section. The KMeans model created during training is loaded, and clusters for the pre-processed prediction data is predicted. Based on the cluster number, the respective model is loaded and is used to predict the data for that cluster. Once the prediction is made for all the clusters, the predictions along with the Wafer names are saved in a CSV file at a given location.

Deployment:

We will be deploying the model to Heroku Cloud.

Owner
Arun Singh Babal
Engineer | Data Science Enthusiasts | Machine Learning | Deep Learning | Advanced Computer Vision.
Arun Singh Babal
A code to clean and extract a bib file based on keywords.

These are two scripts I use to generate clean bib files. clean_bibfile.py: Removes superfluous fields (which are not included in fields_to_keep.json)

Antoine Allard 4 May 16, 2022
Скрипт позволяет заводить задачи в Панель мониторинга YouTrack на основе парсинга сайта safe-surf.ru

Скрипт позволяет заводить задачи в Панель мониторинга YouTrack на основе парсинга сайта safe-surf.ru

Bad_karma 3 Feb 12, 2022
Mata kuliah Bahasa Pemrograman

praktikum2 MENGHITUNG LUAS DAN KELILING LINGKARAN FLOWCHART : OUTPUT PROGRAM : PENJELASAN : Tetapkan nilai pada variabel sesuai inputan dari user :

2 Nov 09, 2021
PyDateWaiter helps waiting special day & calculating remain days till that day with Python code.

PyDateWaiter (v.Beta) PyDateWaiter helps waiting special day(aniversary) & calculating remain days till that day with Python code. Made by wallga gith

wallga 1 Jan 14, 2022
Digitales Raumbuch

Helios Digitales Raumbuch Settings Moved to settings. Basic Commands Setting Up Your Users To create a normal user account, just go to Sign Up and fil

1 Nov 19, 2021
Werkzeug has a debug console that requires a pin. It's possible to bypass this with an LFI vulnerability or use it as a local privilege escalation vector.

Werkzeug Debug Console Pin Bypass Werkzeug has a debug console that requires a pin by default. It's possible to bypass this with an LFI vulnerability

Wyatt Dahlenburg 23 Dec 17, 2022
A Python application that simulates the rolling of a dice, randomly picking one of the 6 faces and then displaying it.

dice-roller-app This is an application developed in Python that shuffles between the 6 faces of a dice, using buttons to shuffle and close the applica

Paddy Costelloe 0 Jul 20, 2021
Fortnite StW Claimer for Daily Rewards, Research Points and free Llamas.

Fortnite Save the World Daily Reward, Research Points & free Llama Claimer This program allows you to claim Save the World Daily Reward, Research Poin

PRO100KatYT 27 Dec 22, 2022
A simple armature retargeting tool for Blender

Simple-Retarget-Tool-Blender A simple armature retargeting tool for Blender Update V2: Set Rest Pose to easily apply rest pose. Preset Import/Export.

Fahad Hasan Pathik 74 Jan 04, 2023
dynamically create __slots__ objects with less code

slots_factory Factory functions and decorators for creating slot objects Slots are a python construct that allows users to create an object that doesn

Michael Green 2 Sep 07, 2021
Convert long numbers into a human-readable format in Python

Convert long numbers into a human-readable format in Python

Alex Zaitsev 73 Dec 28, 2022
A simple wrapper for joy library

Joy CodeGround A simple wrapper for joy library to render joy sketches in browser using vs code, (or in other words, for those who are allergic to Jup

rijfas 9 Sep 08, 2022
How did Covid affect businesses?

NYC_Business_Analysis How did Covid affect businesses? COVID's effect on NYC businesses We all know that businesses in NYC have been affected by COVID

AK 1 Jan 15, 2022
Python 3.9.4 Graphics and Compute Shader Framework and Primitives with no external module dependencies

pyshader Python 3.9.4 Graphics and Compute Shader Framework and Primitives with no external module dependencies Fully programmable shader model (even

Alastair Cota 1 Jan 11, 2022
lets learn Python language with basic examples. highly recommended for beginners who just start coding.

Lets Learn Python 🐍 Learn python from basic programs. learn python from scratch. 1.Online python compiler: https://www.onlinegdb.com/online_python_co

Subhranshu Choudhury 1 Jan 18, 2022
More granular intermediaries for legacy Minecraft versions

Orinthe/Intermediary mappings This repository contains the match information between different versions of Minecraft created by the Orinthe project, a

4 Jan 11, 2022
Runtime Type Checking in Python 3

typo This package intends to provide run-time type checking for functions annotated with argument type hints (standard library typing module in Python

Ivan Smirnov 26 Dec 13, 2022
Assignment for python course, BUPT 2021.

pyFuujinrokuDestiny Assignment for python course, BUPT 2021. Notice username and password must be ASCII encoding. If username exists in database, syst

Ellias Kiri Stuart 3 Jun 18, 2021
The best free and open-source automated time tracker. Cross-platform, extensible, privacy-focused.

Records what you do so that you can know how you've spent your time. All in a secure way where you control the data. Website — Forum — Documentation —

ActivityWatch 7.8k Jan 09, 2023
Este script añade la config de s4vitar a bspwm automaticamente!

Se ha testeado este script en ParrotOS, Kali y Ubuntu. Funciona para todos los sistemas operativos basados en Debian. Instalación git clone https://gi

yorkox 201 Dec 30, 2022