Transformers and related deep network architectures are summarized and implemented here.

Overview

Transformers: from NLP to CV

cover

This is a practical introduction to Transformers from Natural Language Processing (NLP) to Computer Vision (CV)

  1. Introduction
  2. ViT: Transformers for Computer Vision
  3. Visualizing the attention Open In Colab
  4. MLP-Mixer Open In Colab
  5. Hybrid MLP-Mixer + ViT Open In Colab
  6. ConvMixer Open In Colab
  7. Hybrid ConvMixer + MLP-Mixer Open In Colab

1) Introduction

What is wrong with RNNs and CNNs

Learning Representations of Variable Length Data is a basic building block of sequence-to-sequence learning for Neural machine translation, summarization, etc

  • Recurrent Neural Networks (RNNs) are natural fit variable-length sentences and sequences of pixels. But sequential computation inhibits parallelization. No explicit modeling of long and short-range dependencies.
  • Convolutional Neural Networks (CNNs) are trivial to parallelize (per layer) and exploit local dependencies. However, long-distance dependencies require many layers.

Attention!

The Transformer archeticture was proposed in the paper Attention is All You Need. As mentioned in the paper:

"We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely"

"Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train"

Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language). One basic and well known neural network architecture for NMT is called sequence-to-sequence seq2seq and it involves two RNNs.

  • Encoder: RNN network that encodes the input sequence to a single vector (sentence encoding)
  • Decoder: RNN network that generates the output sequences conditioned on the encoder's output. (conditioned language model)

seqseq

The problem of the vanilla seq2seq is information bottleneck, where the encoding of the source sentence needs to capture all information about it in one vector.

As mentioned in the paper Neural Machine Translation by Jointly Learning to Align and Translate

"A potential issue with this encoder–decoder approach is that a neural network needs to be able to compress all the necessary information of a source sentence into a fixed-length vector. This may make it difficult for the neural network to cope with long sentences, especially those that are longer than the sentences in the training corpus."

attention001.gif

Attention provides a solution to the bottleneck problem

  • Core idea: on each step of the decoder, use a direct connection to the encoder to focus on a particular part of the source sequence. Attention is basically a technique to compute a weighted sum of the values (in the encoder), dependent on another value (in the decoder).

The main idea of attention can be summarized as mention the OpenAi's article:

"... every output element is connected to every input element, and the weightings between them are dynamically calculated based upon the circumstances, a process called attention."

Query and Values

  • In the seq2seq + attention model, each decoder hidden state (query) attends to all the encoder hidden states (values)
  • The weighted sum is a selective summary of the information contained in the values, where the query determines which values to focus on.
  • Attention is a way to obtain a fixed-size representation of an arbitrary set of representations (the values), dependent on some other representation (the query).

2) Transformers for Computer Vision

Transfomer based architectures were used not only for NLP but also for computer vision tasks. One important example is Vision Transformer ViT that represents a direct application of Transformers to image classification, without any image-specific inductive biases. As mentioned in the paper:

"We show that reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks"

"Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks"

vit

As we see, an input image is splitted into patches which are treated the same way as tokens (words) in an NLP application. Position embeddings are added to the patch embeddings to retain positional information. Similar to BERT’s class token, a classification head is attached here and used during pre-training and fine-tuning. The model is trained on image classification in supervised fashion.

Multi-head attention

The intuition is similar to have a multi-filter in CNNs. Here we can have multi-head attention, to give the network more capacity and ability to learn different attention patterns. By having multiple different layers that generate (or project) the vectors of queries, keys and values, we can learn multiple representations of these queries, keys and values.

mha

Where each token is projected (in a learnable way) into three vecrors Q, K, and V:

  • Q: Query vector: What I want
  • K: Key vector: What type of info I have
  • V: Value vector: What actual info I have

3) Visualizing the attention

Open In Colab

The basic ViT architecture is used, however with only one transformer layer with one (or four) head(s) for simplicity. The model is trained on CIFAR-10 classification task. The image is splitted in to 12 x 12 = 144 patches as usual, and after training, we can see the 144 x 144 attention scores (where each patch can attend to the others).

imgpatches

Attention map represents the correlation (attention) between all the tokens, where the sum of each row equals 1 representing the probability distribution of attention from a query patch to all others.

attmap

Long distance attention we can see two interesting patterns where background patch attends to long distance other background patches, and this flight patch attends to long distance other flight patches.

attpattern

We can try more heads and more transfomer layers and inspect the attention patterns.

attanim


4) MLP-Mixer

Open In Colab

MLP-Mixer is proposed in the paper An all-MLP Architecture for Vision. As mentioned in the paper:

"While convolutions and attention are both sufficient for good performance, neither of them is necessary!"

"Mixer is a competitive but conceptually and technically simple alternative, that does not use convolutions or self-attention"

Mixer accepts a sequence of linearly projected image patches (tokens) shaped as a “patches × channels” table as an input, and maintains this dimensionality. Mixer makes use of two types of MLP layers:

mixer

  • Channel-mixing MLPs allow communication between different channels, they operate on each token independently and take individual rows of the table as inputs
  • Token-mixing MLPs allow communication between different spatial locations (tokens); they operate on each channel independently and take individual columns of the table as inputs.

These two types of layers are interleaved to enable interaction of both input dimensions.

"The computational complexity of the network is linear in the number of input patches, unlike ViT whose complexity is quadratic"

"Unlike ViTs, Mixer does not use position embeddings"

It is commonly observed that the first layers of CNNs tend to learn detectors that act on pixels in local regions of the image. In contrast, Mixer allows for global information exchange in the token-mixing MLPs.

"Recall that the token-mixing MLPs allow global communication between different spatial locations."

vizmixer

The figure shows hidden units of the four token-mixing MLPs of Mixer trained on CIFAR10 dataset.


5) Hybrid MLP-Mixer and ViT

Open In Colab

We can use both the MLP-Mixer and ViT in one network architecture to get the best of both worlds.

mixvit

Adding a few self-attention sublayers to mixer is expected to offer a simple way to trade off speed for accuracy.


6) CovMixer

Open In Colab

Patches Are All You Need?

Is the performance of ViTs due to the inherently more powerful Transformer architecture, or is it at least partly due to using patches as the input representation.

ConvMixer, an extremely simple model that is similar in many aspects to the ViT and the even-more-basic MLP-Mixer

Despite its simplicity, ConvMixer outperforms the ViT, MLP-Mixer, and some of their variants for similar parameter counts and data set sizes, in addition to outperforming classical vision models such as the ResNet.

While self-attention and MLPs are theoretically more flexible, allowing for large receptive fields and content-aware behavior, the inductive bias of convolution is well-suited to vision tasks and leads to high data efficiency.

ConvMixers are substantially slower at inference than the competitors!

conmixer01


7) Hybrid MLP-Mixer and CovMixer

Open In Colab

Once again, we can use both the MLP-Mixer and ConvMixer in one network architecture to get the best of both worlds. Here is a simple example.

convmlpmixer


References and more information

Owner
Ibrahim Sobh
Ibrahim Sobh
News-Articles-and-Essays - NLP (Topic Modeling and Clustering)

NLP T5 Project proposal Topic Modeling and Clustering of News-Articles-and-Essays Students: Nasser Alshehri Abdullah Bushnag Abdulrhman Alqurashi OVER

2 Jan 18, 2022
Gold standard corpus annotated with verb-preverb connections for Hungarian.

Hungarian Preverb Corpus A gold standard corpus manually annotated with verb-preverb connections for Hungarian. corpus The corpus consist of the follo

RIL Lexical Knowledge Representation Research Group 3 Jan 27, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer: transformer architectures in JAX/Flax Flaxformer is a transformer library for primarily NLP and multimodal research at Google. It is used

Google 114 Dec 29, 2022
A Python script which randomly chooses and prints a file from a directory.

___ ____ ____ _ __ ___ / _ \ | _ \ | _ \ ___ _ __ | '__| / _ \ | |_| || | | || | | | / _ \| '__| | | | __/ | _ || |_| || |_| || __

yesmaybenookay 0 Aug 06, 2021
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples

SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev

Sense-GVT 59 Jan 02, 2023
Fine-tuning scripts for evaluating transformer-based models on KLEJ benchmark.

The KLEJ Benchmark Baselines The KLEJ benchmark (Kompleksowa Lista Ewaluacji Językowych) is a set of nine evaluation tasks for the Polish language und

Allegro Tech 17 Oct 18, 2022
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization 📥 Download Datasets 📥 Download Trained Models INTRODUCTION TH2ZH (

Nakhun Chumpolsathien 5 Jan 03, 2022
Source code of paper "BP-Transformer: Modelling Long-Range Context via Binary Partitioning"

BP-Transformer This repo contains the code for our paper BP-Transformer: Modeling Long-Range Context via Binary Partition Zihao Ye, Qipeng Guo, Quan G

Zihao Ye 119 Nov 14, 2022
Code for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned Language Models in the wild .

🌳 Fingerprinting Fine-tuned Language Models in the wild This is the code and dataset for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned La

LCS2-IIITDelhi 5 Sep 13, 2022
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing pororo performs Natural Language Processing and Speech-related tasks. It is easy to

Kakao Brain 1.2k Dec 21, 2022
Unsupervised text tokenizer for Neural Network-based text generation.

SentencePiece SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabu

Google 6.4k Jan 01, 2023
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
Codes for processing meeting summarization datasets AMI and ICSI.

Meeting Summarization Dataset Meeting plays an essential part in our daily life, which allows us to share information and collaborate with others. Wit

xcfeng 39 Dec 14, 2022
Rootski - Full codebase for rootski.io (without the data)

📣 Welcome to the Rootski codebase! This is the codebase for the application run

Eric 20 Nov 18, 2022
🕹 An esoteric language designed so that the program looks like the transcript of a Pokémon battle

PokéBattle is an esoteric language designed so that the program looks like the transcript of a Pokémon battle. Original inspiration and specification

Eduardo Correia 9 Jan 11, 2022
KoBERT - Korean BERT pre-trained cased (KoBERT)

KoBERT KoBERT Korean BERT pre-trained cased (KoBERT) Why'?' Training Environment Requirements How to install How to use Using with PyTorch Using with

SK T-Brain 1k Jan 02, 2023
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
Awesome-NLP-Research (ANLP)

Awesome-NLP-Research (ANLP)

Language, Information, and Learning at Yale 72 Dec 19, 2022
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17.1k Jan 09, 2023