For use with an 8-bit parallel TFT touchscreen using micropython

Overview

ILI9341-parallel-TFT-driver-for-micropython

For use with an 8-bit parallel TFT touchscreen using micropython. Many thanks to prenticedavid and his MCUFriend TFT library, written in C code and from which I derived this micropython driver. Thank you also to Roberthh on the micropython forum for all his very instructive posts about the use of the micropython viper decorator. This helped me much !

You'll find 2 different ILI9341 drivers for micropython in this repository :
ILI9341_ESP32 -> for use with standard ESP32 microcontroller
ILI9341_RP2 -> for use with Raspberry PICO microcontroller

For the ESP32, it's working well but I sometime have memory issues, in this case use of gc.collect() might be usefull

Both libraries have been fully tested using micropython 1.17

These libraries are exclusively purposed for an 8bit parallel Touchscreen using the ILI9341 driver. Like the ones you find on this page : http://www.lcdwiki.com/2.8inch_Arduino_Display

image image

These libraries include 3 different fonts.

The libraries use micropython_viper decorator to improve speed and achieve reasonable graphic display speed

How to use the files in the repository :

1. After installing micropython on your device:

copy the full content of the corresponding folder to the root directory (using Thonny, Rshell or wathever software you usually use)

2. Short description of the files :

ILI9341.py : Main LCD display library, must be imported in full in the py program in order to use all the features, from this library you can declare a "screen" class object

ILI9341_touch.py : Touchscreen library, must be imported if you need to use the touch feature of the display, from this library you can declare a "touchscreen" class object

ILI9341_char.py : Used to draw characters from the font libraries

sdcard.py : Library to use for SD card access (The ILI9341 parallel display has an integrated micro SD card reader)

FreeMono12pt7b.py : Big fonts
FreeMono9pt7b.py : Medium fonts
FreeSansSerif7pt7b.py : Small fonts

main.py : First example; loaded by default, a test of various routines and a mesaure of the display time
mainfull.py : The example above + touchscreen calibration
scroll.py : An example of a scrolling text (The ILI9341 parallel display has a hardware scrolling feature)

SdcardTimerTest.py : An example to set and display the time and print on screen the content of the SDcard

All the examples above start by setting the pins connected to the display (and if needed to the SD card pins)

3. Pin definition

3.1 Pin definition for the LCD display

LCD_RD = 2
LCD_WR = 4
LCD_RS = 32 # RS & CS pins must be ADC and OUTPUT
LCD_CS = 33 # for touch capability -> For ESP32 only pins 32 & 33 - For PICO only pins 26,27 & 28
LCD_RST = 22
LCD_D0 = 12
LCD_D1 = 13
LCD_D2 = 26
LCD_D3 = 25
LCD_D4 = 17
LCD_D5 = 16
LCD_D6 = 27
LCD_D7 = 14

3.2 Pin definition for the touchscreen

XP = LCD_D0 #
YM = LCD_D1 # Those four pins are used for the touchscreen
YP = LCD_CS # Please note that CS and RS are the same as for the display above
XM = LCD_RS #

Except for the RS and CS pins, you can choose any I/O pin, but be aware that to use the SDcard you will need an available SPI, so save at least one set of SPI pins for this !

4. Touchsceen calibration procedure

Once you have loaded the "main_full_test_LCD_TOUCH.py" file, after a few tests you'll see on screen the calibration procédure. It is a basic set of green crosses you have to touch and when it's done calcultations are made to interpolate the x and y position with the ADC values. Once it is complete you'll find the results giving a set of parameters:

Cal. result : Pos(pixel) = a * ADC_val + b

Short direction ->  a = -0.005244441
                    b = 292.7332

Long direction  ->  a = 0.006892291
                    b = -72.781

Touch anywhere to test !

What you have to do is copy these paramters in the ILI9341_touch.py library :

self.coeff_short = results above for Short direction a
self.const_short = results above for Short direction b
self.coeff_long = results above for Long direction a
self.const_long = results above for Long direction b

and that's it ! See a full video of the process :https://drive.google.com/file/d/1L7yVWag6e606RgQF5fxj9b6aB8_0982Q/view?usp=sharing

5. Using the routines

5.1 Display routines

Once you've declared your "screen" class object using tft=ILI9341.screen(LCD_RD,LCD_WR,LCD_RS,LCD_CS,LCD_RST,LCD_D0,LCD_D1,LCD_D2,LCD_D3,LCD_D4,LCD_D5,LCD_D6,LCD_D7)

the following commands are availabe :

tft.begin() : You have to start with this one, this initiates and resets the display
tft.fillscreen(Color) : Fill the entire screen with the corresponding color (16-bit color value)
tft.setrotation(0) : 0 an 2 are portrait mode, 1 and 3 are landscape mode
tft.fillRect(start x,start y, width, height ,color) : Draw a filled rectangle
tft.drawFastVLine(start x,start y, length, color) : Draw a vertical line
tft.drawFastHLine(start x,start y, length, color) : Draw an horizontal line
tft.drawLine(start x,start y, end x, end y, color) : Draw any other type of line
tft.drawPixel(x, y, color) : Draw a Pixel
tft.drawCircle(x, y, r, color) : Draw a circle, x,y = center position, r = radius in pixels
tft.fillDisk(x, y, r, color) : Draw a completely filled disk x,y = center position, r = radius in pixels
tft.drawDisk(x, y, y, r1, r2, color) : Draw a ring x,y = center position, r1 = inner radius in pixels, r2 = outer radius in pixels

tft.SetFont(i) : i 1 or 2 or 3 at the moment since only 3 fonts are available - A font MUST BE SET in order to use the following text features
tft.setTextColor(color) : Sets the characters color (16-bit value)
tft.setTextCursor(x,y) : Position the text cursor at the desired value - This position is the lowest-left pixel to start character printing
tft.printh(String) : Print the string, add a "\n" character at the end for linefeed
tft.prints(String) : Same as printh, but with a very cool scrolling additional feature (only in portrait mode) ! (see example)

5.2 Touch routines

Once you've declared your "screen" class object using ts = ILI9341_touch.touchscreen(XP, YP, XM, YM)

the following commands are availabe :
ts.Pin_reset() :
This is an important function. in every methods you want to implement, you have to do this reset before every call to a tft (display) routine (remember: CS and RS Pins are shared between the LCD display and the touchscreen interface, if the pins are not reset the screen functions will not work).

ts.pressure() : Return a value corresponding to the pressing strength - Mostly used to detect a touch
ts.getPoint() : Return the (x,y) position of the touch (provided the touchscreen has been correctly calibrated, see #4)
ts.Point_Listen() : Use with care, this loop returns the (x,y) touch value after the user has stopped touching (when removing the pencil). Used in the calibration function if you want to see it working.

Small Robot, with LIDAR and DepthCamera. Using ROS for Maping and Navigation

🤖 RoboCop 🤖 Small Robot, with LIDAR and DepthCamera. Using ROS for Maping and Navigation Made by Clemente Donoso, 📍 Chile 🇨🇱 RoboCop Lateral Fron

Clemente Donoso Krauss 2 Jan 04, 2022
HomeAssistant - Polyaire AirTouch 4 Integration

HomeAssistant - Polyaire AirTouch 4 Integration Custom integration to add an AirTouch 4 AC Controller Installation: Copy contents of custom_components

7 Aug 05, 2022
How to configure IOMMU device for nested Proxmox hypervisor (PVE) VM - PCIe Passthrough

Configuring PCIe Passthrough for Nested Virtualization on Proxmox Summary: If you are running bare-metal L0 (level 0) Proxmox (PVE) hypervisor with ne

Travis Johnson 6 Aug 30, 2022
Example for Calculating Robot Dynamics Using Pinocchio Library

A Example for Calculating Robot Dynamics Using Pinocchio Library Developed by: Xinyang Tian. Platform: Linux + Pinocchio. In this work, i use Pinocchi

Rot_Tianers 33 Dec 28, 2022
Bucatini: a soft PIPE PHY for FPGA SerDes

Bucatini: a soft PIPE PHY for FPGA SerDes Bucatini is a noodly gateware layer capable of transforming an FPGA SerDes into a PIPE PHY, allowing you to

Great Scott Gadgets 28 Dec 02, 2022
Hook and simulate global keyboard events on Windows and Linux.

keyboard Take full control of your keyboard with this small Python library. Hook global events, register hotkeys, simulate key presses and much more.

BoppreH 3.2k Dec 30, 2022
a fork of the OnionShare software better optimized for lower spec lightweight machines and ARM processors

OnionShare-Optimized A fork of the OnionShare software better optimized for lower spec lightweight machines and ARM processors such as Raspberry Pi or

ALTPORT 4 Aug 05, 2021
Using a raspberry pi, we listen to the coffee machine and count the number of coffee consumption

A typical datarootsian consumes high-quality fresh coffee in their office environment. The board of dataroots had a very critical decision by the end of 2021-Q2 regarding coffee consumption.

dataroots 51 Nov 21, 2022
KIRI - Keyboard Interception, Remapping, and Injection using Raspberry Pi as an HID Proxy.

KIRI - Keyboard Interception, Remapping and Injection using Raspberry Pi as a HID Proxy. Near limitless abilities for a keyboard warrior. Features Sim

Viggo Falster 10 Dec 23, 2022
An open source two key macro-pad modeled to look like a cartoony melting popsicle

macropopsicle An open source two key macro-pad modeled to look like a cartoony melting popsicle. Build instructions Parts List -1x Top case half (3D p

17 Aug 18, 2022
Programming of Robotics Systems course at the University of Aveiro, Portugal, 2021-2022.

Programação de Sistemas Robóticos Miguel Riem Oliveira Universidade de Aveiro 2021-2022 Projeto AtlasCar Projecto RACE IROS 2014 AtlasCar2 ATOM IROS 2

Miguel Riem de Oliveira 22 Jul 13, 2022
Iec62056-21-mqtt - Publish DSMR P1 telegrams acquired over IEC62056-21 to MQTT

IEC 62056-21 Publish DSMR P1 telegrams acquired over IEC62056-21 to MQTT. -21 is

Marijn Suijten 1 Jun 05, 2022
CPU benchmark by calculating Pi, powered by Python3

cpu-benchmark Info: CPU benchmark by calculating Pi, powered by Python 3. Algorithm The program calculates pi with an accuracy of 10,000 decimal place

Alex Dedyura 20 Jan 03, 2023
A custom mechanical keyboard inspired by the CFTKB Mysterium

Env-KB A custom mechanical keyboard inspired by the CFTKB Mysterium Build Guide and Parts List What is to do? Right now for the first 5 PCBs I have, i

EnviousData 203 Jan 04, 2023
Micropython-wifimanager-esp8266 - Simple Wifi Manager for ESP8266 using MicroPython

micropython-wifimanager-esp8266 Simple Wifi Manager for ESP8266 using MicroPytho

Abhinuv Nitin Pitale 1 Jan 04, 2022
Raspberry Pi Pico Escape Room game.

Pico Escape Room Raspberry Pi Pico Escape Room game. Parts Raspberry Pi Pico Set of 2 x 20-pin Headers for Raspberry Pi Pico 4PCS Breadboards Kit Incl

Kevin Thomas 5 Feb 02, 2022
Workshop for student hackathons focused on IoT dev

Scenario: The Mutt Matcher (IoT version) According to the World Health Organization there are more than 200 million stray dogs worldwide. The American

Microsoft 15 Aug 10, 2022
A Home Assistant sensor that tells you what holiday is next

Next Holiday Sensor This sensor tells you what holiday is coming up next. You can use it to set holiday light colors or other scenes. The state of the

Nick Touran 20 Dec 04, 2022
Ha-rpi gpio - Home Assistant Raspberry Pi GPIO Integration

Home Assistant Raspberry Pi GPIO custom integration This is a spin-off from the

Shay Levy 98 Dec 24, 2022
This Home Assistant custom component adding support for controlling Midea dehumidifiers on local network.

This custom component for Home assistant adds support for Midea dehumidifier appliances via the local area network. homeassistant-midea-dehumidifier-l

Nenad Bogojevic 91 Dec 28, 2022