LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

Overview

LightningFSL: Few-Shot Learning with Pytorch-Lightning

LICENSE Python last commit

In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, including two official ones

Boosting Few-Shot Classification with View-Learnable Contrastive Learning (ICME 2021)

Rectifying the Shortcut Learning of Background for Few-Shot Learning (NeurIPS 2021)

Contents

  1. Advantages
  2. Few-shot classification Results
  3. General Guide

Advantages:

This repository is built on top of LightningCLI, which is very convenient to use after being familiar with this tool.

  1. Enabling multi-GPU training
    • Our implementation of FSL framework allows DistributedDataParallel (DDP) to be included in the training of Few-Shot Learning, which is not available before to the best of our knowledge. Previous researches use DataParallel (DP) instead, which is inefficient and requires more computation storages. We achieve this by modifying the DDP sampler of Pytorch, making it possible to sample few-shot learning tasks among devices. See dataset_and_process/samplers.py for details.
  2. High reimplemented accuracy
    • Our reimplementations of some FSL algorithms achieve strong performance. For example, our ResNet12 implementation of ProtoNet and Cosine Classifier achieves 76+ and 80+ accuracy on 5w5s task of miniImageNet, respectively. All results can be reimplemented using pre-defined configuration files in config/.
  3. Quick and convenient creation of new algorithms
    • Pytorch-lightning provides our codebase with a clean and modular structure. Built on top of LightningCLI, our codebase unifies necessary basic components of FSL, making it easy to implement a brand-new algorithm. An impletation of an algorithm usually only requires three short additional files, one specifying the lightningModule, one specifying the classifer head, and the last one specifying all configurations. For example, see the code of ProtoNet (modules/PN.py, architectures/classifier/proto_head.py) and cosine classifier (modules/cosine_classifier.py, architectures/classifier/CC_head.py.
  4. Easy reproducability
    • Every time of running results in a full copy of yaml configuration file in the logging directory, enabling exact reproducability (by using the direct yaml file instead of creating a new one).
  5. Enabling both episodic/non-episodic algorithms
    • Switching with a single parameter is_meta in the configuration file.

Implemented Few-shot classification Results

Implemented results on few-shot classification datasets. The average results of 2,000 randomly sampled episodes repeated 5 times for 1/5-shot evaluation with 95% confidence interval are reported.

miniImageNet Dataset

Models Backbone 5-way 1-shot 5-way 5-shot pretrained models
Protypical Networks ResNet12 61.19+-0.40 76.50+-0.45 link
Cosine Classifier ResNet12 63.89+-0.44 80.94+-0.05 link
Meta-Baseline ResNet12 62.65+-0.65 79.10+-0.29 link
S2M2 WRN-28-10 58.85+-0.20 81.83+-0.15 link
S2M2+Logistic_Regression WRN-28-10 62.36+-0.42 82.01+-0.24
MoCo-v2(unsupervised) ResNet12 52.03+-0.33 72.94+-0.29 link
Exemplar-v2 ResNet12 59.02+-0.24 77.23+-0.16 link
PN+CL ResNet12 63.44+-0.44 79.42+-0.06 link
COSOC ResNet12 69.28+0.49 85.16+-0.42 link

General Guide

To understand the code correctly, it is highly recommended to first quickly go through the pytorch-lightning documentation, especially LightningCLI. It won't be a long journey since pytorch-lightning is built on the top of pytorch.

Installation

Just run the command:

pip install -r requirements.txt

running an implemented few-shot model

  1. Downloading Datasets:
  2. Training (Except for Meta-baseline and COSOC):
    • Choose the corresponding configuration file in 'config'(e.g.set_config_PN.py for PN model), set inside the parameter 'is_test' to False, set GPU ids (multi-GPU or not), dataset directory, logging dir as well as other parameters you would like to change.
    • modify the first line in run.sh (e.g., python config/set_config_PN.py).
    • To begin the running, run the command bash run.sh
  3. Training Meta-baseline:
    • This is a two-stage algorithm, with the first stage being CEloss-pretraining, followed by ProtoNet finetuning. So a two-stage training is need. The first training uses the configuration file config/set_config_meta_baseline_pretrain.py. The second uses config/set_config_meta_baseline_finetune.py, with pre-training model path from the first stage, specified by the parameterpre_trained_path in the configuration file.
  4. Training COSOC:
    • For pre-training Exemplar, choose configuration file config/set_config_MoCo.py and set parameter is_exampler to True.
    • For runing COS algorithm, run the command python COS.py --save_dir [save_dir] --pretrained_Exemplar_path [model_path] --dataset_path [data_path]. [save_dir] specifies the saving directory of all foreground objects, [model_path] and [data_path] specify the pathes of pre-trained model and datasets, respectively.
    • For runing a FSL algorithm with COS, choose configuration file config/set_config_COSOC.py and set parameter data["train_dataset_params"] to the directory of saved data of COS algorithm, pre_trained_path to the directory of pre-trained Exemplar.
  5. Testing:
    • Choose the same configuration file as training, set parameter is_test to True, pre_trained_path to the directory of checkpoint model (with suffix '.ckpt'), and other parameters (e.g. shot, batchsize) as you disire.
    • modify the first line in run.sh (e.g., python config/set_config_PN.py).
    • To begin the testing, run the command bash run.sh

Creating a new few-shot algorithm

It is quite simple to implement your own algorithm. most of algorithms only need creation of a new LightningModule and a classifier head. We give a breif description of the code structure here.

run.py

It is usually not needed to modify this file. The file run.py wraps the whole training and testing procedure of a FSL algorithm, for which all configurations are specified by an individual yaml file contained in the /config folder; see config/set_config_PN.py for example. The file run.py contains a python class Few_Shot_CLI, inherited from LightningCLI. It adds new hyperpameters (Also specified in configuration file) as well as testing process for FSL.

FewShotModule

Need modification. The folder modules contains LightningModules for FSL models, specifying model components, optimizers, logging metrics and train/val/test processes. Notably, modules/base_module.py contains the template module for all FSL models. All other modules inherit the base module; see modules/PN.py and modules/cosine_classifier.py for how episodic/non-episodic models inherit from the base module.

architectures

Need modification. We divide general FSL architectures into feature extractor and classification head, specified respectively in architectures/feature_extractor and architectures/classifier. These are just common nn modules in pytorch, which shall be embedded in LightningModule mentioned above. The recommended feature extractor is ResNet12, which is popular and shows promising performance. The classification head, however, varies with algorithms and need specific designs.

Datasets and DataModule

It is usually not needed for modification. Pytorch-lightning unifies data processing across training, val and testing into a single LightningDataModule. We disign such a datamodule in dataset_and_process/datamodules/few_shot_datamodule.py for FSL, enabling episodic/non-episodic sampling and DDP for multi-GPU fast training. The definition of Dataset itself is in dataset_and_process/datasets, specified as common pytorch datasets class. There is no need to modify the dataset module unless new datasets are involved.

Callbacks and Plugins

It is usually not needed for modification. See documentation of pytorch-lightning for detailed introductions of callbacks and Plugins. They are additional functionalities added to the system in a modular fashion.

Configuration

Need modification. See LightningCLI for how a yaml configuration file works. For each algorithm, there needs one specific configuration file, though most of the configurations are the same across algorithms. Thus it is convenient to copy one configuration and change it for a new algorithm.

Owner
Xu Luo
M.S. student of SMILE Lab, UESTC
Xu Luo
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022
Implementation of the paper Recurrent Glimpse-based Decoder for Detection with Transformer.

REGO-Deformable DETR By Zhe Chen, Jing Zhang, and Dacheng Tao. This repository is the implementation of the paper Recurrent Glimpse-based Decoder for

Zhe Chen 33 Nov 30, 2022
5 Jan 05, 2023
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
a grammar based feedback fuzzer

Nautilus NOTE: THIS IS AN OUTDATE REPOSITORY, THE CURRENT RELEASE IS AVAILABLE HERE. THIS REPO ONLY SERVES AS A REFERENCE FOR THE PAPER Nautilus is a

Chair for Sys­tems Se­cu­ri­ty 158 Dec 28, 2022
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity

Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity Indic TTS Samples can be found at https://peter-yh-wu.github.io/cross-

Peter Wu 1 Nov 12, 2022
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022