PrimaryBid - Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift

Overview

PrimaryBid

Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift This project is composed of two parts: Part1 and Part2

Part1

This part involves ingesting an application lifecycle raw data in .csv formats (“CC Application Lifecycle.csv”). The data is transformed to return various Application stages as column names, and the time of stage completion, as values against each customer ID via python.

Files included in this section include:

  • Solution Directory:
    • application_etl.py (Contains transformation class for application lifecycle raw data)
    • run_application_etl.py (Ingest and executes transformations for application lifecycle raw data)
  • Test Directory:
    • test_application_etl.py (runs a series of test for objects in the transformation class)
    • Input Directory (Contains all the input test files)
    • Output Directory (Contains all the output test files)

Execution:

  1. Execute run_application_etl.py to obtain output file for transformed application lifecycle data.

Modifications:

  1. Extra transformation, bug fixes and other modification can be added in application_etl.py as an object.
  2. For new transformations (new functions), add a test for the function in test_application_etl.py and execute it with pytest -vv.
  3. Call the object in run_application_etl.py after test passes to return desired output.

Part2

This part presents an architectural design to ingest data from a MongoDB database - into a Redshift data platform. The solution accomodates the addition of more data sources in the near future. The DDL scripts which form part of the solution is resusable for ingesting and loading data into redshift.

Files included in this section establishes the creation of target tables for the data ingestion process:

  • dwh.cfg (Infrastucture parameters and configuration)
  • DDL_queries.py (DDL queries to drop, creat, copy/insert data into Redshift)
  • table_setup_load.py (Class to manage the establish connection to database setup and teardown of tables in Redshift)
  • execute_ddl_process.py (script to execute processes in table_setup_load class)
  • test_execute_ddl_process.py (script to test the setup and teardown of resources.)
  • requirement.txt (key libraries needed to execute .py scripts)
  • makefile (file to automate process of installing and testing libraries and .py scripts respectively.)

Execution:

  1. Execute execute_ddl_process.py to create and load data into target tables from S3.

Modifications:

  1. Bucket file sources and other config paramters can be added in dwh.cfg
  2. New DDl queries which includes ingesting data from multiple tables from aggregations/joins can be added in DDL_queries.py.
  3. For other functions not captured in this section work, custom functions can be added in table_setup_load.py
  4. Before executing scripts for production environments, test the modifications by executing test_execute_ddl_process.py

The architecture below highlights the processes involved in ingesting data from various data sources into redshift

  • Architeture

Data Architecture

Owner
Emmanuel Boateng Sifah
Computer scientist, Doctoral researcher, Solutions engineer, Data scientist, Data analyst and Data engineer
Emmanuel Boateng Sifah
This is an analysis and prediction project for house prices in King County, USA based on certain features of the house

This is a project for analysis and estimation of House Prices in King County USA The .csv file contains the data of the house and the .ipynb file con

Amit Prakash 1 Jan 21, 2022
Fit models to your data in Python with Sherpa.

Table of Contents Sherpa License How To Install Sherpa Using Anaconda Using pip Building from source History Release History Sherpa Sherpa is a modeli

134 Jan 07, 2023
PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

Burn Research 4 Oct 13, 2022
MidTerm Project for the Data Analysis FT Bootcamp, Adam Tycner and Florent ZAHOUI

MidTerm Project for the Data Analysis FT Bootcamp, Adam Tycner and Florent ZAHOUI Hallo

Florent Zahoui 1 Feb 07, 2022
Full automated data pipeline using docker images

Create postgres tables from CSV files This first section is only relate to creating tables from CSV files using postgres container alone. Just one of

1 Nov 21, 2021
Spaghetti: an open-source Python library for the analysis of network-based spatial data

pysal/spaghetti SPAtial GrapHs: nETworks, Topology, & Inference Spaghetti is an open-source Python library for the analysis of network-based spatial d

Python Spatial Analysis Library 203 Jan 03, 2023
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.

Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis

Blei Lab 4.7k Jan 09, 2023
Feature Detection Based Template Matching

Feature Detection Based Template Matching The classification of the photos was made using the OpenCv template Matching method. Installation Use the pa

Muhammet Erem 2 Nov 18, 2021
Monitor the stability of a pandas or spark dataframe ⚙︎

Population Shift Monitoring popmon is a package that allows one to check the stability of a dataset. popmon works with both pandas and spark datasets.

ING Bank 403 Dec 07, 2022
Python Practicum - prepare for your Data Science interview or get a refresher.

Python-Practicum Python Practicum - prepare for your Data Science interview or get a refresher. Data Data visualization using data on births from the

Jovan Trajceski 1 Jul 27, 2021
Example Of Splunk Search Query With Python And Splunk Python SDK

SSQAuto (Splunk Search Query Automation) Example Of Splunk Search Query With Python And Splunk Python SDK installation: ➜ ~ git clone https://github.c

AmirHoseinTangsiriNET 1 Nov 14, 2021
Weather analysis with Python, SQLite, SQLAlchemy, and Flask

Surf's Up Weather analysis with Python, SQLite, SQLAlchemy, and Flask Overview The purpose of this analysis was to examine weather trends (precipitati

Art Tucker 1 Sep 05, 2021
Projeto para realizar o RPA Challenge . Utilizando Python e as bibliotecas Selenium e Pandas.

RPA Challenge in Python Projeto para realizar o RPA Challenge (www.rpachallenge.com), utilizando Python. O objetivo deste desafio é criar um fluxo de

Henrique A. Lourenço 1 Apr 12, 2022
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

136 Dec 22, 2022
Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Data Scientist Learning Plan Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Trung-Duy Nguyen 27 Nov 01, 2022
Uses MIT/MEDSL, New York Times, and US Census datasources to analyze per-county COVID-19 deaths.

Covid County Executive summary Setup Install miniconda, then in the command line, run conda create -n covid-county conda activate covid-county conda i

Ahmed Fasih 1 Dec 22, 2021
Convert tables stored as images to an usable .csv file

Convert an image of numbers to a .csv file This Python program aims to convert images of array numbers to corresponding .csv files. It uses OpenCV for

711 Dec 26, 2022
Time ranges with python

timeranges Time ranges. Read the Docs Installation pip timeranges is available on pip: pip install timeranges GitHub You can also install the latest v

Micael Jarniac 2 Sep 01, 2022
Employee Turnover Analysis

Employee Turnover Analysis Submission to the DataCamp competition "Can you help reduce employee turnover?"

Jannik Wiedenhaupt 1 Feb 13, 2022