Python Research Framework

Related tags

Machine Learningpyfra
Overview

pyfra

The Python Research Framework.

Design Philosophy

Research code has some of the fastest shifting requirements of any type of code. It's nearly impossible to plan ahead of time the proper abstractions, because it is exceedingly likely that in the course of the project what you originally thought was your main focus suddenly no longer is. Further, research code (especially in ML) often involves big and complicated pipelines, typically involving many different machines, which are either run by hand or using shell scripts that are far more complicated than any shell script ever should be.

Therefore, the objective of pyfra is to make it as fast and low-friction as possible to write research code involving complex pipelines over many machines. This entails making it as easy as possible to implement a research idea in reality, at the cost of fine-grained control and the long-term maintainability of the system. In other words, pyfra expects that code will either be rapidly obsoleted by newer code, or rewritten using some other framework once it is no longer a research project and requirements have settled down.

Pyfra is in its very early stages of development. The interface may change rapidly and without warning.

Features:

  • Spin up an internal webserver complete with a permissions system using only a few lines of code
  • Extremely elegant shell integration—run commands on any server seamlessly. All the best parts of bash and python combined
  • Automated remote environment setup, so you never have to worry about provisioning machines by hand again
  • (WIP) Tools for painless functional programming in python
  • (Coming soon) High level API for experiment management/scheduling and resource provisioning
  • (Coming soon) Idempotent resumable data pipelines with no cognitive overhead

Example code

from pyfra import *

loc = Remote()
rem = Remote("[email protected]")
nas = Remote("[email protected]")

@page("Run experiment", dropdowns={'server': ['local', 'remote']})
def run_experiment(server: str, config_file: str, some_numerical_value: int, some_checkbox: bool):
    r = loc if server == 'local' else rem

    r.sh("git clone https://github.com/EleutherAI/gpt-neox")
    
    # rsync as a function can do local-local, local-remote, and remote-remote
    rsync(config_file, r.file("gpt-neox/configs/my-config.yml"))
    rsync(nas.file('some_data_file'), r.file('gpt-neox/data/whatever'))
    
    return r.sh('cd gpt-neox; python3 main.py')

@page("Write example file and copy")
def example():
    rem.fwrite("testing.txt", "hello world")
    
    # tlocal files can be specified as just a string
    rsync(rem.file('testing123.txt'), 'test1.txt')
    rsync(rem.file('testing123.txt'), loc.file('test2.txt'))

    loc.sh('cat test1.txt')
    
    assert fread('test1.txt') == fread('test2.txt')
    
    # fread, fwrite, etc can take a `rem.file` instead of a string filename.
    # you can also use all *read and *write functions directly on the remote too.
    assert fread('test1.txt') == fread(rem.file('testing123.txt'))
    assert fread('test1.txt') == rem.fread('testing123.txt')

    # ls as a function returns a list of files (with absolute paths) on the selected remote.
    # the returned value is displayed on the webpage.
    return '\n'.join(rem.ls('/'))

@page("List files in some directory")
def list_files(directory):
    return sh(f"ls -la {directory | quote}")


# start internal webserver
webserver()

Installation

pip3 install git+https://github.com/EleutherAI/pyfra/

The version of PyPI is not up to date, do not use it.

Webserver screenshots

image image

Comments
  • Try to install sudo in _install

    Try to install sudo in _install

    Sudo is installed in setup.apt(), which is not run when python_version=None is set for an env. This PR tries to install the sudo package on _install which solves this issue.

    opened by kurumuz 1
  • Styling updates 2

    Styling updates 2

    This should fix some issues that were noticed recently.

    • increases the width of the content in the middle
    • all button icons are now the same (until we figure out better solution)
    • content that is overflowing should now be scrollable
    opened by jprester 0
  • Update styling

    Update styling

    I made some updates to styling for the admin dashboard pages.

    Stuff I did:

    • changed the styling to look like design mockup
    • moved ids to classes in css. Ids should be used for javascript selector
    • added some svg icons
    • made the UI somewhat responsive
    opened by jprester 0
  • docs: docs are empty

    docs: docs are empty

    Screenshot from the RTD page:

    image

    I recommend checking the raw output of the build on the RTD dashboard.

    Probably some library installation issue when running setup.

    opened by TomFrederik 0
  • Type annotations

    Type annotations

    Type annotations are a must-have for public facing library exports, as they allow users to infer a lot of information about calls/return values independent of documentation, as well as help with code completions.

    opened by hugbubby 0
Releases(v0.3.0)
  • v0.3.0(Dec 9, 2021)

    What's new

    • Envs now resume where they left off (and Remotes have an option for turning this behaviour on)
    • @stage caching added

    Breaking Changes

    • delegation promoted to full submodule and experiment removed
    • pyfra.functional removed
    • pyfra.web deprecated and moved to contrib
    • contrib revamp

    Full Changelog: https://github.com/EleutherAI/pyfra/compare/8e775df36ca8f2ae39b0b7add9c30eab446207b1...9616e835578f8ad04a6d9c3b405777fc4b7e0853

    Source code(tar.gz)
    Source code(zip)
  • v0.3.0rc6(Sep 1, 2021)

Owner
EleutherAI
EleutherAI
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code

Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co

Hugging Face 2.5k Jan 07, 2023
Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 05, 2022
Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along with material in the form of Jupyter Notebooks.

Databricks Certification Spark Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along

19 Dec 13, 2022
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
Machine Learning from Scratch

Machine Learning from Scratch Author: Shengxuan Wang From: Oregon State University Content: Building Machine Learning model from Scratch, without usin

ShawnWang 0 Jul 05, 2022
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning My

3 Apr 10, 2022
A collection of machine learning examples and tutorials.

machine_learning_examples A collection of machine learning examples and tutorials.

LazyProgrammer.me 7.1k Jan 01, 2023
PennyLane is a cross-platform Python library for differentiable programming of quantum computers

PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural ne

PennyLaneAI 1.6k Jan 01, 2023
A classification model capable of accurately predicting the price of secondhand cars

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this

Akarsh Singh 2 Sep 13, 2022
Predict the income for each percentile of the population (Python) - FRENCH

05.income-prediction Predict the income for each percentile of the population (Python) - FRENCH Effectuez une prédiction de revenus Prérequis Pour ce

1 Feb 13, 2022
Fast Fourier Transform-accelerated Interpolation-based t-SNE (FIt-SNE)

FFT-accelerated Interpolation-based t-SNE (FIt-SNE) Introduction t-Stochastic Neighborhood Embedding (t-SNE) is a highly successful method for dimensi

Kluger Lab 547 Dec 21, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
A collection of Scikit-Learn compatible time series transformers and tools.

tsfeast A collection of Scikit-Learn compatible time series transformers and tools. Installation Create a virtual environment and install: From PyPi p

Chris Santiago 0 Mar 30, 2022
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
A repository to index and organize the latest machine learning courses found on YouTube.

📺 ML YouTube Courses At DAIR.AI we ❤️ open education. We are excited to share some of the best and most recent machine learning courses available on

DAIR.AI 9.6k Jan 01, 2023
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
Spark development environment for k8s

Local Spark Dev Env with Docker Development environment for k8s. Using the spark-operator image to ensure it will be the same environment. Start conta

Otacilio Filho 18 Jan 04, 2022
Machine Learning Algorithms

Machine-Learning-Algorithms In this project, the dataset was created through a survey opened on Google forms. The purpose of the form is to find the p

Göktuğ Ayar 3 Aug 10, 2022
CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL)

CyLP CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use i

COIN-OR Foundation 161 Dec 14, 2022