Ladder network is a deep learning algorithm that combines supervised and unsupervised learning

Overview

This repository contains source code for the experiments in a paper titled Semi-Supervised Learning with Ladder Networks by A Rasmus, H Valpola, M Honkala, M Berglund, and T Raiko.

Required libraries

Install Theano, Blocks Stable 0.2, Fuel Stable 0.2

Refer to the Blocks installation instructions for details but use tag v0.2 instead. Something along:

pip install git+git://github.com/mila-udem/[email protected]
pip install git+git://github.com/mila-udem/[email protected]

Fuel comes with Blocks, but you need to download and convert the datasets. Refer to the Fuel documentation. One might need to rename the converted files.

fuel-download mnist
fuel-convert mnist --dtype float32
fuel-download cifar10
fuel-convert cifar10
Alternatively, one can use the environment.yml file that is provided in this repo to create an conda environment.
  1. First install anaconda from https://www.continuum.io/downloads. Then,
  2. conda env create -f environment.yml
  3. source activate ladder
  4. The environment should be good to go!

Models in the paper

The following commands train the models with seed 1. The reported numbers in the paper are averages over several random seeds. These commands use all the training samples for training (--unlabeled-samples 60000) and none are used for validation. This results in a lot of NaNs being printed during the trainining, since the validation statistics are not available. If you want to observe the validation error and costs during the training, use --unlabeled-samples 50000.

MNIST all labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 1000,1,0.01,0.01,0.01,0.01,0.01 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_full
# Bottom
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,0,0,0,0,0,0 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_bottom
# Gamma model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,2 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 60000 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_all_baseline
MNIST 100 labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 1000,10,0.1,0.1,0.1,0.1,0.1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_full
# Bottom-only
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 5000,0,0,0,0,0,0 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_bottom
# Gamma
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0.5 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 100 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_100_baseline
MNIST 1000 labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,20,0.1,0.1,0.1,0.1,0.1 --f-local-noise-std 0.2 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_full
# Bottom-only
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,0,0,0,0,0,0 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_bottom
# Gamma model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,10 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 1000 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_1000_baseline
MNIST 50 labels
# Full model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,20,0.1,0.1,0.1,0.1,0.1 --labeled-samples 50 --unlabeled-samples 60000 --seed 1 -- mnist_50_full
MNIST convolutional models
# Conv-FC
run.py train --encoder-layers convv:1000:26:1:1-convv:500:1:1:1-convv:250:1:1:1-convv:250:1:1:1-convv:250:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec gauss --denoising-cost-x 1000,10,0.1,0.1,0.1,0.1,0.1,0.1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_conv_fc
# Conv-Small, Gamma
run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0,0,0,1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1  -- mnist_100_conv_gamma
# Conv-Small, supervised baseline. Overfits easily, so keep training short.
run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0,0,0,0 --num-epochs 20 --lrate-decay 0.5 --f-local-noise-std 0.45 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_conv_baseline
CIFAR models
# Conv-Large, Gamma
./run.py train --encoder-layers convv:96:3:1:1-convf:96:3:1:1-convf:96:3:1:1-maxpool:2:2-convv:192:3:1:1-convf:192:3:1:1-convv:192:3:1:1-maxpool:2:2-convv:192:3:1:1-convv:192:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec 0-0-0-0-0-0-0-0-0-0-0-0-gauss --dataset cifar10 --act leakyrelu --denoising-cost-x 0,0,0,0,0,0,0,0,0,0,0,0,4.0 --num-epochs 70 --lrate-decay 0.86 --seed 1 --whiten-zca 3072 --contrast-norm 55 --top-c False --labeled-samples 4000 --unlabeled-samples 50000 -- cifar_4k_gamma
# Conv-Large, supervised baseline. Overfits easily, so keep training short.
./run.py train --encoder-layers convv:96:3:1:1-convf:96:3:1:1-convf:96:3:1:1-maxpool:2:2-convv:192:3:1:1-convf:192:3:1:1-convv:192:3:1:1-maxpool:2:2-convv:192:3:1:1-convv:192:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec 0-0-0-0-0-0-0-0-0-0-0-0-0 --dataset cifar10 --act leakyrelu --denoising-cost-x 0,0,0,0,0,0,0,0,0,0,0,0,0 --num-epochs 20 --lrate-decay 0.5 --seed 1 --whiten-zca 3072 --contrast-norm 55 --top-c False --labeled-samples 4000 --unlabeled-samples 50000 -- cifar_4k_baseline
Evaluating models with testset

After training a model, you can infer the results on a test set by performing the evaluate command. An example use after training a model:

./run.py evaluate results/mnist_all_bottom0
Owner
Curious AI
Deep good. Unsupervised better.
Curious AI
This is an interactive MiniMap made with Python, PyQT5 & Pytesseract for the game

NWMM-New-World-MiniMap Features: Automatically grabs position from "New World" Instance Live visualisation of player position on MiniMap Circular & re

Nezzquikk 18 Sep 21, 2022
Several implementations of classical games (ex: FlappyBird, Minesweeper etc.) using Python (pygame)

Mini Games with Pygame This projects implement several classic and popular games in Python, using python package -- pygame. Currently, 4 games are alr

1 Feb 14, 2022
Easily manage wine prefixes in a new way. Run Windows software and games on Linux

Bottles Easily manage wineprefix using environments Documentation · Forums · Telegram group · Funding 📚 Documentation Before opening a new issue, che

Bottles 4.1k Jan 09, 2023
🎅 Celebrating 2021 Christmas with the development of this game

ChristmasGame (DEVELOPING) 🎅 Celebrating Christmas with the development of this game You can also use this engine to create your game too, just empty

Érik Freitas 5 Jan 10, 2022
OpenGL experiments with Pygame & ModernGL

pygame-opengl OpenGL experiments with Pygame & ModernGL TODO Skybox & Reflections Post-process effects (motion blur, color correction, etc..) Normal m

Kadir Aksoy 4 Oct 28, 2022
Code d'un jeu en python par Graveen (avec mes modifications)

ATTENTION Vous ne devez pas copier coller le code sans le comprendre, apprennez déjà, le python et pygame, et seulement ensuite, vous pourrrez l'utili

TheBigWolfy 7 Nov 02, 2022
Pyxel is a retro game engine for Python.

Pyxel is open source and free to use. Let's start making a retro game with Pyxel!

Takashi Kitao 11.2k Jan 09, 2023
Replicating Minecraft World Generation in Python

Minecraft World Generation in Python This is an attempt to replicate Minecraft world generation in Python. This is part of an article published on Med

Bilal Himite 159 Dec 19, 2022
A Cataclysm: Dark Days Ahead launcher with additional features

CDDA Game Launcher A Cataclysm: Dark Days Ahead launcher with additional features. Download here. Implemented features Launching the game Detecting th

Rémy Roy 402 Jan 02, 2023
🕹️ Jeu Azul en Python avec 4 IAs 🤖 implémentées, jouable de 1 à 4 joueurs

Projet jeu Azul 🕹️ Jeu Azul en Python avec 4 IAs 🤖 implémentées, jouable de 1 à 4 joueurs Par : Berachem MARKRIA et Tristan MARTINEZ Projet réalisé

Berachem Markria 2 Jun 07, 2022
A Pygame game made in 48 hours

Flappuccino Flappuccino is a game created in 48 hours for the PyGame Community New Years Jam using Python with Pygame. Screenshots Background Informat

PolyMars 242 Jan 02, 2023
Simplerpg - python terminal game made from scratch.

Simplerpg - python terminal game made from scratch.

reversee 3 Sep 17, 2022
Play a game of Phazed with a bot or with other players or watch bots play with each other

Phazed Game and Player play a game of Phazed with a bot or with other players or watch bots play with each other Live Demo hosted on repl.it (makes su

Xin Yu 0 Aug 28, 2021
Pyvidplayer - An extremely easy to use module that plays videos on Pygame

pyvidplayer An extremely easy to use module that plays videos on Pygame Example

17 Dec 05, 2022
A program to read, edit, and write save files for the game Railroads! Online

RROSE - v0.3.6 This program is intended to be used as an external tool to Railroads Online server hosts. It will read save files, allow to modify entr

17 Dec 09, 2022
A small fun project to simulate Conway's Game of Life, created in Python.

A small fun project to simulate Conway's Game of Life, created in Python. Conway's Game of Life simulates a grid of cells, where the state of each cell consists of whether the cell is alive or dead.

Harrison Verrios 1 Jun 19, 2022
It calculates the Nim sum of a nim game.

nim-sum-calculator It calculates the Nim sum of a nim game. The rules of Nim The traditional game of Nim is played with a number of coins arranged in

2 Jan 02, 2022
A basic quiz game using Python

QuizGame A basic quiz game using Python Passwords for quizzes (NO CAPS LOCK!): -ryzermattishandsome -canisleepwithyou Before using this, please make s

Austin 1 Nov 12, 2021
Découvrez CubeCraft Launcher, une application uniquement codé en Python et en Batch

Découvrez CubeCraft Launcher, une application uniquement codé en Python et en Batch. Grâce à son interface graphique facile et intuitive, vous pouvez vous retrouver facilement.

1 May 21, 2022
CoinTex: Cross-platform Multi-Level Game created in Python using Kivy

CoinTex: Cross-platform Multi-Level Game created in Python using Kivy CoinTex is a multi-level adventure game created using the Kivy cross-platform Py

Ahmed Gad 57 Dec 11, 2022