[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Overview

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

This repo contains the PyTorch code and implementation for the paper Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning
Bin Liang#, Wangda Luo#, Xiang Li, Lin Gui, Min Yang, Xiaoqi Yu, and Ruifeng Xu*. Proceedings of CIKM 2020

Please cite our paper and kindly give a star for this repository if you use this code.

For any question, plaese email [email protected] or [email protected].

Model Overview

model

Requirement

  • pytorch >= 0.4.0
  • numpy >= 1.13.3
  • sklearn
  • python 3.6 / 3.7
  • CUDA 9.0
  • transformers

To install requirements, run pip install -r requirements.txt.

Dataset

you can directly use the processed dataset located in datasets/:
Note that you need to extract the data from the datasets folder: unzip datasets.zip

├── data
│   │   ├── semeval14(res14,laptop14)
│   │   ├── semeval15(res15)
│   │   ├── semeval16(res16)
│   │   ├── MAMS

The dataSet contains with cl_2X3 is the dataSet obtained after label argment, and each data is as follows:
Context
Aspect
Aspect-sentiment-label(-1:negative;0:netrual;1:positive)
Contrastive-label(aspect-dependent/aspect-invariant)
Contrastive-aspect-label(0:negative;1:netrual;2:positive)

Preparation

a) Download the pytorch version pre-trained bert-base-uncased model and vocabulary from the link provided by huggingface. Then change the value of parameter --bert_model_dir to the directory of the bert model. you can get the pre-trained bert-base-uncased model in https://github.com/huggingface/transformers.

b) Label enhancement method. For new data, additional supervised signals need to be obtained through label enhancement;
    i) Through BERT overfitting the training set, the acc can reach more than 97%;
    ii) Replace aspect with other or mask, and get the emotional label of the aspect after replacing the aspect;
    iii) Determine whether the output label is consistent with the real label, and fill in the aspect-dependent/aspect-invariant label for the data.

c) The data defaults are in data_utils.py, which you can view if you want to change the data entered into the model.

Training

  1. Adjust the parameters and set the experiment.
    --model:Selection model.(bert_spc_cl)
    --dataset:Select dataSet.(acl14,res14,laptop14,res15,res16,mams and so on)
    --num_epoch:Iterations of the model.
    --is_test 0:Verify module.(1 is data verification, 0 is model training)
    --type: Select a task type.(normal,cl2,cl6,cl2X3)
  2. Run the shell script to start the program.
bash run.sh

For run.sh code:


CUDA_VISIBLE_DEVICES=3 \
  python train_cl.py \
  --model_name bert_spc_cl \
  --dataset cl_mams_2X3 \
  --num_epoch 50 \
  --is_test 0 \
  --type cl2X3

For dataset,you can choose these dataset : "cl_acl2014_2X3" "cl_res2014_2X3" "cl_laptop2014_2X3" "cl_res2015_2X3" "cl_res2016_2X3" "cl_mams_2X3".

Testing

bash run_test.sh

Citation

@inproceedings{10.1145/3459637.3482096,
author = {Liang, Bin and Luo, Wangda and Li, Xiang and Gui, Lin and Yang, Min and Yu, Xiaoqi and Xu, Ruifeng},
title = {Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning},
year = {2021},
isbn = {9781450384469},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3459637.3482096},
doi = {10.1145/3459637.3482096},
abstract = {Most existing aspect-based sentiment analysis (ABSA) research efforts are devoted to extracting the aspect-dependent sentiment features from the sentence towards the given aspect. However, it is observed that about 60% of the testing aspects in commonly used public datasets are unknown to the training set. That is, some sentiment features carry the same polarity regardless of the aspects they are associated with (aspect-invariant sentiment), which props up the high accuracy of existing ABSA models when inevitably inferring sentiment polarities for those unknown testing aspects. Therefore, in this paper, we revisit ABSA from a novel perspective by deploying a novel supervised contrastive learning framework to leverage the correlation and difference among different sentiment polarities and between different sentiment patterns (aspect-invariant/-dependent). This allows improving the sentiment prediction for (unknown) testing aspects in the light of distinguishing the roles of valuable sentiment features. Experimental results on 5 benchmark datasets show that our proposed approach substantially outperforms state-of-the-art baselines in ABSA. We further extend existing neural network-based ABSA models with our proposed framework and achieve improved performance.},
booktitle = {Proceedings of the 30th ACM International Conference on Information & Knowledge Management},
pages = {3242–3247},
numpages = {6},
keywords = {sentiment analysis, contrastive learning, aspect sentiment analysis},
location = {Virtual Event, Queensland, Australia},
series = {CIKM '21}
}

or

@inproceedings{liang2021enhancing,
  title={Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning},
  author={Liang, Bin and Luo, Wangda and Li, Xiang and Gui, Lin and Yang, Min and Yu, Xiaoqi and Xu, Ruifeng},
  booktitle={Proceedings of the 30th ACM International Conference on Information \& Knowledge Management},
  pages={3242--3247},
  year={2021}
}

Credits

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
Semantic Segmentation Suite in TensorFlow

Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!

George Seif 2.5k Jan 06, 2023
Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect"

Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect" by Michael Ne

M Nestor 1 Apr 19, 2022
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
Advancing mathematics by guiding human intuition with AI

Advancing mathematics by guiding human intuition with AI This repo contains two colab notebooks which accompany the paper, available online at https:/

DeepMind 315 Dec 26, 2022
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

Jiayi Chen 3 Mar 03, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022