An Implementation of SiameseRPN with Feature Pyramid Networks

Overview

SiameseRPN with FPN

This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the original AlexNet structures.

For more details about siameseRPN please refer to the paper : High Performance Visual Tracking with Siamese Region Proposal Network by Bo Li, Junjie Yan,Wei Wu, Zheng Zhu, Xiaolin Hu.

For more details about Feature Pyramid Network please refer to the paper: Feature Pyramid Network for Object Detection by Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.

Networks

  • Siamese Region Proposal Networks

    image-20210909160951628

  • Feature Pyramid Networks

    image-20210909161336484

  • SimaeseRPN+FPN

    • Template Branch

      0001

    • Detection Branch

      0001

Results

This project can get 0.618 AUC on OTB100, which also achieves overall 1.3% progress than the performance of baseline Siamese-RPN. Additionally, based on the ablation study results, it also shows that it can achieve robust performance different operating systems and GPUs.

Data preparation

I only use pre-trained models to finish my experiments,so here I would post the testing dataset OTB100 I get from http://cvlab.hanyang.ac.kr/tracker_benchmark/

If you don't want to download through the website above, you can just download: https://pan.baidu.com/s/1vWIn8ovCGKmlgIdHdt_MkA key: p8u4

For more details about OTB100 please refer to the paper: Object Tracking Benchmark by Yi Wu, Jongwoo Lim, Ming-Hsuan Yang.

Train phase

I didn't do any training but I still keep the baseline training method in my project. So if you have VID dataset or youtube-bb dataset, I would just post the steps of training here

Create dataset:

python bin/create_dataset_ytbid.py --vid-dir /PATH/TO/ILSVRC2015 --ytb-dir /PATH/TO/YT-BB --output-dir /PATH/TO/SAVE_DATA --num_threads 6

Create lmdb:

python bin/create_lmdb.py --data-dir /PATH/TO/SAVE_DATA --output-dir /PATH/TO/RESULT.lmdb --num_threads 12

Train:

python bin/train_siamrpn.py --data_dir /PATH/TO/SAVE_DATA

Test phase

If want to test the tracker, please first change the project path:

sys.path.append('[your_project_path]')

And then choose the combinations of different layers I putted in the net/network.py

then input your model path and dataset path to run:

python bin/test_OTB.py -ms [your_model_path] -v tb100 -d [your_dataset_path]

Environment

I've exported my anaconda and pip environment into /env/conda_env.yaml and /env/pip_requirements.txt

if you want to use it, just run the command below accordingly

for anaconda:

conda create -n [your_env_name] -f conda_env.yaml

for pip:

pip install -r requirements.txt

Model Download

Model which the baseline uses: https://pan.baidu.com/s/1vSvTqxaFwgmZdS00U3YIzQ keyword: v91k

Model after training 50 epoch: https://pan.baidu.com/s/1m9ISra0B04jcmjW1n73fxg keyword: 0s03

Experimental Environment

(1)

DELL-Precision-7530

OS: Ubuntu 18.04 LTS CPU: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz

Memory: 2*8G DDR4 2666MHZ

GPU: Nvidia Quadro P1000

(2)

HP OMEN

OS: Windows 10 Home Edition

CPU: Intel(R) Core(TM) i7-9750H CPU @ 2.6GHz

Memory: 2*8G DDR4 2666MHZ

GPU: Nvidia Geforce RTX2060

Optimization

On Ubuntu and Quadro P1000

  • AUCs with model siamrpn_38.pth
Layers Results(AUC)
baseline 0.610
2+5 0.618
2+3+5 0.607
2+3+4+5 0.611
  • AUCs with model siamrpn_50.pth
Layers Results(AUC)
baseline 0.600
2+5 0.605
2+3+5 0.594
2+3+4+5 0.605

On Windows 10 and Nvidia Geforce RTX2060

  • AUCs with model siamrpn_38.pth
layers Results(AUC)
baseline 0.610
2+5 0.617
2+3+5 0.607
2+3+4+5 0.612
  • AUCs with model siamrpn_50.pth
Layers Results(AUC)
baseline 0.597
2+5 0.606
2+3+5 0.597
2+3+4+5 0.605

Reference

[1] B. Li, J. Yan, W. Wu, Z. Zhu, X. Hu, High Performance Visual Tracking with Siamese Region Proposal Network, inProceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pages 8971-8980.

[2] T. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, S. Belongie, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pages 2117-2125.

[3] Y. Wu, J. Lim, M. Yang, "Object Tracking Benchmark", in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, pages 1834-1848.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

63 Oct 17, 2022
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
Smart edu-autobooking - Johnson @ DMI-UNICT study room self-booking system

smart_edu-autobooking Sistema di autoprenotazione per l'aula studio [email protected]

Davide Carnemolla 17 Jun 20, 2022
TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020) About The goal of our research problem is illustrated below: give

59 Dec 09, 2022
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 07, 2022
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates

Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi

Zengyi Qin 3 Oct 18, 2022
Semantic Segmentation with SegFormer on Drone Dataset.

SegFormer_Segmentation Semantic Segmentation with SegFormer on Drone Dataset. You can check out the blog on Medium You can also try out the model with

Praneet 8 Oct 20, 2022
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

225 Dec 25, 2022
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

Ren Tianhe 49 Nov 10, 2022