A keras-based real-time model for medical image segmentation (CFPNet-M)

Overview

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation

Result
Result
Result
Result
Result
This repository contains the implementation of a novel light-weight real-time network (CFPNet-Medicine: CFPNet-M) to segment different types of biomedical images. It is a medical version of CFPNet, and the dataset we used from top to bottom are **DRIVE, ISBI-2012, Infrared Breast, CVC-ClinicDB and ISIC 2018**. The details of CFPNet-M and CFPNet can be found here respectively.

CFPNet-M, CFPNet Paper, DC-UNet and CFPNet Code

Architecture of CFPNet-M

CFP module

Result

CFPNet-M

Result

Dataset

In this project, we test five datasets:

  • Infrared Breast Dataset
  • Endoscopy (CVC-ClinicDB)
  • Electron Microscopy (ISBI-2012)
  • Drive (Digital Retinal Image)
  • Dermoscopy (ISIC-2018)

Usage

Prerequisities

The following dependencies are needed:

  • Kearas == 2.2.4
  • Opencv == 3.3.1
  • Tensorflow == 1.10.0
  • Matplotlib == 3.1.3
  • Numpy == 1.19.1

training

You can download the datasets you want to try, and just run: for UNet, DC-UNet, MultiResUNet, ICNet, CFPNet-M, ESPNet and ENet, the code is in the folder network. For Efficient-b0, MobileNet-v2 and Inception-v3, the code is in the main.py. Choose the segmentation model you want to test and run:

main.py

Segmentation Results of Five datasets

Result_table
Result_table

Speed and FLOPs

The code of calculate FLOPs are in main.py, you can run them after training.

Result_table

Citation

@article{lou2021cfpnet,
  title={CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation},
  author={Lou, Ange and Guan, Shuyue and Loew, Murray},
  journal={arXiv preprint arXiv:2105.04075},
  year={2021}
}

@article{lou2021cfpnet,
  title={CFPNet: Channel-wise Feature Pyramid for Real-Time Semantic Segmentation},
  author={Lou, Ange and Loew, Murray},
  journal={arXiv preprint arXiv:2103.12212},
  year={2021}
}

@inproceedings{lou2021dc,
  title={DC-UNet: rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation},
  author={Lou, Ange and Guan, Shuyue and Loew, Murray H},
  booktitle={Medical Imaging 2021: Image Processing},
  volume={11596},
  pages={115962T},
  year={2021},
  organization={International Society for Optics and Photonics}
}
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi

THUDM 540 Dec 30, 2022
Like a cowsay but without cows!

Foxsay This is a simple program that generates pictures of a cute fox with a message. It is like a cowsay but without cows! Fox girls are better! Usag

Anastasia Kim 28 Feb 20, 2022
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Nataniel Ruiz 1.3k Dec 26, 2022
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting

Official code of APHYNITY Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting (ICLR 2021, Oral) Yuan Yin*, Vincent Le Guen*

Yuan Yin 24 Oct 24, 2022
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
Jingju baseline - A baseline model of our project of Beijing opera script generation

Jingju Baseline It is a baseline of our project about Beijing opera script gener

midon 1 Jan 14, 2022
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
Non-Vacuous Generalisation Bounds for Shallow Neural Networks

This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data. To run in a nix-shell with required

Felix Biggs 0 Feb 04, 2022
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022