Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Related tags

Deep Learningt-SVGP
Overview

Dual Parameterization of Sparse Variational Gaussian Processes

Quality checks and Tests Docs build

Documentation | Notebooks | API reference

Introduction

This repository is the official implementation of the methods in the publication:

  • V. Adam, P.E. Chang, M.E. Khan, and A. Solin (2021). Dual Parameterization of Sparse Variational Gaussian Processes. In Advances in Neural Information Processing Systems (NeurIPS). [arXiv]

The paper's main result shows that an alternative (dual) parameterization for SVGP models leads to a better objective for learning and allows for faster inference via natural gradient descent.

Repository structure

The repository has the following folder structure:

  • scr contains the source code
  • experiments contains scripts to reproduce some of the experiments presented in the paper
  • docs contains documentation in the form of notebooks and an api reference.
  • tests contains unit and integration tests for the source code

Installation

We recommend using Python version 3.7.3 and pip version 20.1.1. To install the package, run:

pip install -e .

To run the tests, notebooks, build the docs or run the experiments, install the dependencies:

pip install \
  -r tests_requirements.txt \
  -r notebook_requirements.txt \
  -r docs/docs_requirements.txt \
  -e .

Notebooks

To build the notebooks from source, use jupytext:

jupytext --to notebook [filename].py

Citation

If you use the code in this repository for your research, please cite the paper as follows:

@inproceedings{adam2021dual,
  title={Dual Parameterization of Sparse Variational {G}aussian Processes},
  author={Adam, Vincent and Chang, Paul Edmund and Khan, Mohammad Emtiyaz and Solin, Arno},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

Contributing

For all correspondence, please contact [email protected].

License

This software is provided under the MIT license.

Owner
AaltoML
Machine learning group at Aalto University lead by Prof. Solin
AaltoML
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021
Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Handheld Multi-Frame Neural Depth Refinement This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Mul

55 Dec 14, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
Single-Stage 6D Object Pose Estimation, CVPR 2020

Overview This repository contains the code for the paper Single-Stage 6D Object Pose Estimation. Yinlin Hu, Pascal Fua, Wei Wang and Mathieu Salzmann.

CVLAB @ EPFL 89 Dec 26, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Semi-supervised Stance Detection of Tweets Via Distant Network Supervision

SANDS This is an annonymous repository containing code and data necessary to reproduce the results published in "Semi-supervised Stance Detection of T

2 Sep 22, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
Hyperbolic Image Segmentation, CVPR 2022

Hyperbolic Image Segmentation, CVPR 2022 This is the implementation of paper Hyperbolic Image Segmentation (CVPR 2022). Repository structure assets :

Mina Ghadimi Atigh 46 Dec 29, 2022
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022