An end-to-end machine learning library to directly optimize AUC loss

Overview

LibAUC

An end-to-end machine learning library for AUC optimization.

Why LibAUC?

Deep AUC Maximization (DAM) is a paradigm for learning a deep neural network by maximizing the AUC score of the model on a dataset. There are several benefits of maximizing AUC score over minimizing the standard losses, e.g., cross-entropy.

  • In many domains, AUC score is the default metric for evaluating and comparing different methods. Directly maximizing AUC score can potentially lead to the largest improvement in the model’s performance.
  • Many real-world datasets are usually imbalanced . AUC is more suitable for handling imbalanced data distribution since maximizing AUC aims to rank the predication score of any positive data higher than any negative data

Links

Installation

$ pip install libauc

Usage

Official Tutorials:

  • 01.Creating Imbalanced Benchmark Datasets [Notebook][Script]
  • 02.Training ResNet20 with Imbalanced CIFAR10 [Notebook][Script]
  • 03.Training with Pytorch Learning Rate Scheduling [Notebook][Script]
  • 04.Training with Imbalanced Datasets on Distributed Setting [Coming soon]

Quickstart for beginner:

>>> #import library
>>> from libauc.losses import AUCMLoss
>>> from libauc.optimizers import PESG
...
>>> #define loss
>>> Loss = AUCMLoss(imratio=0.1)
>>> optimizer = PESG(imratio=0.1)
...
>>> #training
>>> model.train()    
>>> for data, targets in trainloader:
>>>	data, targets  = data.cuda(), targets.cuda()
        preds = model(data)
        loss = Loss(preds, targets) 
        optimizer.zero_grad()
        loss.backward(retain_graph=True)
        optimizer.step()
...	
>>> #restart stage
>>> optimizer.update_regularizer()		
...   
>>> #evaluation
>>> model.eval()    
>>> for data, targets in testloader:
	data, targets  = data.cuda(), targets.cuda()
        preds = model(data)

Please visit our website or github for more examples.

Citation

If you find LibAUC useful in your work, please cite the following paper:

@article{yuan2020robust,
title={Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification},
author={Yuan, Zhuoning and Yan, Yan and Sonka, Milan and Yang, Tianbao},
journal={arXiv preprint arXiv:2012.03173},
year={2020}
}

Contact

If you have any questions, please contact us @ Zhuoning Yuan [[email protected]] and Tianbao Yang [[email protected]] or please open a new issue in the Github.

Comments
  • Only compatible with Nvidia GPU

    Only compatible with Nvidia GPU

    I tried running the example tutorial but I got the following error. ''' AssertionError: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx '''

    opened by Beckham45 2
  • Extend to Multi-class Classification Task and Be compatible with PyTorch scheduler

    Extend to Multi-class Classification Task and Be compatible with PyTorch scheduler

    Hi Zhuoning,

    This is an interesting work! I am wondering if the DAM method can be extended to a multi-class classification task with long-tailed imbalanced data. Intuitively, this should be possible as the famous sklearn tool provides auc score for multi-class setting by using one-versus-rest or one-versus-one technique.

    Besides, it seems that optimizer.update_regularizer() is called only when the learning rate is reduced, thus it would be more elegant to incorporate this functional call into a pytorch lr scheduler. E.g.,

    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
    scheduler.step()    # override the step to fulfill: optimizer.update_regularizer()
    
    

    For current libauc version, the PESG optimizer is not compatible with schedulers in torch.optim.lr_scheduler . It would be great if this feature can be supported in the future.

    Thanks for your work!

    opened by Cogito2012 2
  • When to use retain_graph=True?

    When to use retain_graph=True?

    Hi,

    When to use retain_graph=True in the loss backward function?

    In 2 examples (2 and 4), it is True. But not in the other examples.

    I appreciate your time.

    opened by dfrahman 1
  • Using AUCMLoss with imratio>1

    Using AUCMLoss with imratio>1

    I'm not very familiar with the maths in the paper so please forgive me if i'm asking something obvious.

    The AUCMLoss uses the "imbalance ratio" between positive and negative samples. The ratio is defined as

    the ratio of # of positive examples to the # of negative examples

    Or imratio=#pos/#neg

    When #pos<#neg, imratio is some value between 0 and 1. But when #pos>#neg, imratio>1

    Will this break the loss calculations? I have a feeling it would invalidate the many 1-self.p calculations in the LibAUC implementation, but as i'm not familiar with the maths I can't say for sure.

    Also, is there a problem (mathematically speaking) with calculating imratio=#pos/#total_samples, to avoid the problem above? When #pos<<#neg, #neg approximates #total_samples.

    opened by ayhyap 1
  • AUCMLoss does not use margin argument

    AUCMLoss does not use margin argument

    I noticed in the AUCMLoss class that the margin argument is not used. Following the formulation in the paper, the forward function should be changed in line 20 from 2*self.alpha*(self.p*(1-self.p) + \ to 2*self.alpha*(self.p*(1-self.p)*self.margin + \

    opened by ayhyap 1
  • How to train multi-label classification tasks? (like chexpert)

    How to train multi-label classification tasks? (like chexpert)

    I have started using this library and I've read your paper Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification, and I'm still not sure how to train a multi-label classification (MLC) model.

    Specifically, how did you fine-tune for the Chexpert multi-label classification task? (i.e. classify 5 diseases, where each image may have presence of 0, 1 or more diseases)

    • The first step pre-training with Cross-entropy loss seems clear to me
    • You mention: "In the second step of AUC maximization, we replace the last classifier layer trained in the first step by random weights and use our DAM method to optimize the last classifier layer and all previous layers.". The new classifier layer is a single or multi-label classifier?
    • In the Appendix I, figure 7 shows only one score as output for Deep AUC maximization (i.e. only one disease)
    • In the code, both AUCMLoss() and APLoss_SH() receive single-label outputs, not multi-label outputs, apparently

    How do you train for the 5 diseases? Train sequentially Cardiomegaly, then Edema, and so on? or with 5 losses added up? or something else?

    opened by pdpino 4
  • Example for tensorflow

    Example for tensorflow

    Thank you for the great library. Does it currently support tensorflow? If so, could you provide an example of how it can be used with tensorflow? Thank you very much

    opened by Kokkini 1
Releases(1.1.4)
  • 1.1.4(Jul 26, 2021)

    What's New

    • Added PyTorch dataloader for CheXpert dataset. Tutorial for training CheXpert is available here.
    • Added support for training AUC loss on CPU machines. Note that please remove lines with .cuda() from the code.
    • Fixed some bugs and improved the training stability
    Source code(tar.gz)
    Source code(zip)
  • 1.1.3(Jun 16, 2021)

  • 1.1.2(Jun 14, 2021)

    What's New

    1. Add SOAP optimizer contributed by @qiqi-helloworld @yzhuoning for optimizing AUPRC. Please check the tutorial here.
    2. Update ResNet18, ResNet34 with pretrained models on ImageNet1K
    3. Add new strategy for AUCM Loss: imratio is calculated over a mini-batch if initial value is not given
    4. Fixed some bugs and improved the training stability
    Source code(tar.gz)
    Source code(zip)
  • V1.1.0(May 10, 2021)

    What's New:

    • Fixed some bugs and improved the training stability
    • Changed default settings in loss function for binary labels to be 0 and 1
    • Added Pytorch dataloaders for CIFAR10, CIFAR100, CAT_vs_Dog, STL10
    • Enabled training DAM with Pytorch leanring scheduler, e.g., ReduceLROnPlateau, CosineAnnealingLR
    Source code(tar.gz)
    Source code(zip)
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
An adaptive hierarchical energy management strategy for hybrid electric vehicles

An adaptive hierarchical energy management strategy This project contains the source code of an adaptive hierarchical EMS combining heuristic equivale

19 Dec 13, 2022
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
VGGVox models for Speaker Identification and Verification trained on the VoxCeleb (1 & 2) datasets

VGGVox models for speaker identification and verification This directory contains code to import and evaluate the speaker identification and verificat

338 Dec 27, 2022
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
imbalanced-DL: Deep Imbalanced Learning in Python

imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc

NTUCSIE CLLab 19 Dec 28, 2022
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021