Python code for ICLR 2022 spotlight paper EViT: Expediting Vision Transformers via Token Reorganizations

Related tags

Text Data & NLPevit
Overview

Expediting Vision Transformers via Token Reorganizations

This repository contains PyTorch evaluation code, training code and pretrained EViT models for the ICLR 2022 Spotlight paper:

Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations

Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song, Jue Wang, Pengtao Xie

The proposed EViT models obtain competitive tradeoffs in terms of speed / precision:

EViT

If you use this code for a paper please cite:

@inproceedings{liang2022evit,
title={Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations},
author={Youwei Liang and Chongjian Ge and Zhan Tong and Yibing Song and Jue Wang and Pengtao Xie},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=BjyvwnXXVn_}
}

Model Zoo

We provide EViT-DeiT-S models pretrained on ImageNet 2012.

Token fusion Keep rate [email protected] [email protected] #Params URL
0.9 79.8 95.0 22.1M model
0.8 79.8 94.9 22.1M model
0.7 79.5 94.8 22.1M model
0.6 78.9 94.5 22.1M model
0.5 78.5 94.2 22.1M model
0.9 79.9 94.9 22.1M model
0.8 79.7 94.8 22.1M model
0.7 79.4 94.7 22.1M model
0.6 79.1 94.5 22.1M model
0.5 78.4 94.1 22.1M model

Preparation

The reported results in the paper were obtained with models trained with 16 NVIDIA A100 GPUs using Python3.6 and the following packages

torch==1.9.0
torchvision==0.10.0
timm==0.4.12
tensorboardX==2.4
torchprofile==0.0.4
lmdb==1.2.1
pyarrow==5.0.0

These packages can be installed by running pip install -r requirements.txt.

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

We use the same datasets as in DeiT. You can optionally use an LMDB dataset for ImageNet by building it using folder2lmdb.py and passing --use-lmdb to main.py, which may speed up data loading.

Usage

First, clone the repository locally:

git clone https://github.com/youweiliang/evit.git

Change directory to the cloned repository by running cd evit, install necessary packages, and prepare the datasets.

Training

To train EViT/0.7-DeiT-S on ImageNet, set the datapath (path to dataset) and logdir (logging directory) in run_code.sh properly and run bash ./run_code.sh (--nproc_per_node should be modified if necessary). Note that the batch size in the paper is 16x128=2048.

Set --base_keep_rate in run_code.sh to use a different keep rate, and set --fuse_token to configure whether to use inattentive token fusion.

Training/Finetuning on higher resolution images

To training on images with a (higher) resolution h, set --input-size h in run_code.sh.

Multinode training

Please refer to DeiT for multinode training.

Finetuning

First set the datapath, logdir, and ckpt (the model checkpoint for finetuning) in run_code.sh, and then run bash ./finetune.sh.

Evaluation

To evaluate a pre-trained EViT/0.7-DeiT-S model on ImageNet val with a single GPU run (replacing checkpoint with the actual file):

python3 main.py --model deit_small_patch16_shrink_base --fuse_token --base_keep_rate 0.7 --eval --resume checkpoint --data-path /path/to/imagenet

You can also pass --dist-eval to use multiple GPUs for evaluation.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Acknowledgement

We would like to think the authors of DeiT, based on which this project is built.

Owner
Youwei Liang
Youwei Liang
ETM - R package for Topic Modelling in Embedding Spaces

ETM - R package for Topic Modelling in Embedding Spaces This repository contains an R package called topicmodels.etm which is an implementation of ETM

bnosac 37 Nov 06, 2022
Common Voice Dataset explorer

Common Voice Dataset Explorer Common Voice Dataset is by Mozilla Made during huggingface finetuning week Usage pip install -r requirements.txt streaml

Ceyda Cinarel 22 Nov 16, 2022
Tools and data for measuring the popularity & growth of various programming languages.

growth-data Tools and data for measuring the popularity & growth of various programming languages. Install the dependencies $ pip install -r requireme

3 Jan 06, 2022
Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings of ACL: ACL 2021)

BERT-for-Surprisal Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings

7 Dec 05, 2022
kochat

Kochat 챗봇 빌더는 성에 안차고, 자신만의 딥러닝 챗봇 애플리케이션을 만드시고 싶으신가요? Kochat을 이용하면 손쉽게 자신만의 딥러닝 챗봇 애플리케이션을 빌드할 수 있습니다. # 1. 데이터셋 객체 생성 dataset = Dataset(ood=True) #

1 Oct 25, 2021
Generating Korean Slogans with phonetic and structural repetition

LexPOS_ko Generating Korean Slogans with phonetic and structural repetition Generating Slogans with Linguistic Features LexPOS is a sequence-to-sequen

Yeoun Yi 3 May 23, 2022
Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).

For better performance, you can try NLPGNN, see NLPGNN for more details. BERT-NER Version 2 Use Google's BERT for named entity recognition (CoNLL-2003

Kaiyinzhou 1.2k Dec 26, 2022
EdiTTS: Score-based Editing for Controllable Text-to-Speech

Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

Neosapience 99 Jan 02, 2023
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN

Sepid Hosseini 13 Nov 24, 2022
The guide to tackle with the Text Summarization

The guide to tackle with the Text Summarization

Takahiro Kubo 1.2k Dec 30, 2022
Chinese Pre-Trained Language Models (CPM-LM) Version-I

CPM-Generate 为了促进中文自然语言处理研究的发展,本项目提供了 CPM-LM (2.6B) 模型的文本生成代码,可用于文本生成的本地测试,并以此为基础进一步研究零次学习/少次学习等场景。[项目首页] [模型下载] [技术报告] 若您想使用CPM-1进行推理,我们建议使用高效推理工具BMI

Tsinghua AI 1.4k Jan 03, 2023
An extension for asreview implements a version of the tf-idf feature extractor that saves the matrix and the vocabulary.

Extension - matrix and vocabulary extractor for TF-IDF and Doc2Vec An extension for ASReview that adds a tf-idf extractor that saves the matrix and th

ASReview 4 Jun 17, 2022
LeBenchmark: a reproducible framework for assessing SSL from speech

LeBenchmark: a reproducible framework for assessing SSL from speech

11 Nov 30, 2022
RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2

RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi

Stefan Dumitrescu 9 Nov 07, 2022
Just a Basic like Language for Zeno INC

zeno-basic-language Just a Basic like Language for Zeno INC This is written in 100% python. this is basic language like language. so its not for big p

Voidy Devleoper 1 Dec 18, 2021
An implementation of the Pay Attention when Required transformer

Pay Attention when Required (PAR) Transformer-XL An implementation of the Pay Attention when Required transformer from the paper: https://arxiv.org/pd

7 Aug 11, 2022
华为商城抢购手机的Python脚本 Python script of Huawei Store snapping up mobile phones

HUAWEI STORE GO 2021 说明 基于Python3+Selenium的华为商城抢购爬虫脚本,修改自近两年没更新的项目BUY-HW,为女神抢Nova 8(什么时候华为开始学小米玩饥饿营销了?) 原项目的登陆以及抢购部分已经不可用,本项目对原项目进行了改正以适应新华为商城,并增加一些功能

ZhangLiang 111 Dec 22, 2022
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema

27 Dec 22, 2022
A minimal code for fairseq vq-wav2vec model inference.

vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex

Vladimir Larin 7 Nov 15, 2022
Collection of scripts to pinpoint obfuscated code

Obfuscation Detection (v1.0) Author: Tim Blazytko Automatically detect control-flow flattening and other state machines Description: Scripts and binar

Tim Blazytko 230 Nov 26, 2022