Learning Continuous Image Representation with Local Implicit Image Function

Overview

LIIF

This repository contains the official implementation for LIIF introduced in the following paper:

Learning Continuous Image Representation with Local Implicit Image Function

Yinbo Chen, Sifei Liu, Xiaolong Wang

The project page with video is at https://yinboc.github.io/liif/.

Citation

If you find our work useful in your research, please cite:

@article{chen2020learning,
  title={Learning Continuous Image Representation with Local Implicit Image Function},
  author={Chen, Yinbo and Liu, Sifei and Wang, Xiaolong},
  journal={arXiv preprint arXiv:2012.09161},
  year={2020}
}

Environment

  • Python 3
  • Pytorch 1.6.0
  • TensorboardX
  • yaml, numpy, tqdm, imageio

Quick Start

  1. Download a DIV2K pre-trained model.
Model File size Download
EDSR-baseline-LIIF 18M Dropbox | Google Drive
RDN-LIIF 256M Dropbox | Google Drive
  1. Convert your image to LIIF and present it in a given resolution (with GPU 0, [MODEL_PATH] denotes the .pth file)
python demo.py --input xxx.png --model [MODEL_PATH] --resolution [HEIGHT],[WIDTH] --output output.png --gpu 0

Reproducing Experiments

Data

mkdir load for putting the dataset folders.

  • DIV2K: mkdir and cd into load/div2k. Download HR images and bicubic validation LR images from DIV2K website (i.e. Train_HR, Valid_HR, Valid_LR_X2, Valid_LR_X3, Valid_LR_X4). unzip these files to get the image folders.

  • benchmark datasets: cd into load/. Download and tar -xf the benchmark datasets (provided by this repo), get a load/benchmark folder with sub-folders Set5/, Set14/, B100/, Urban100/.

  • celebAHQ: mkdir load/celebAHQ and cp scripts/resize.py load/celebAHQ/, then cd load/celebAHQ/. Download and unzip data1024x1024.zip from the Google Drive link (provided by this repo). Run python resize.py and get image folders 256/, 128/, 64/, 32/. Download the split.json.

Running the code

0. Preliminaries

  • For train_liif.py or test.py, use --gpu [GPU] to specify the GPUs (e.g. --gpu 0 or --gpu 0,1).

  • For train_liif.py, by default, the save folder is at save/_[CONFIG_NAME]. We can use --name to specify a name if needed.

  • For dataset args in configs, cache: in_memory denotes pre-loading into memory (may require large memory, e.g. ~40GB for DIV2K), cache: bin denotes creating binary files (in a sibling folder) for the first time, cache: none denotes direct loading. We can modify it according to the hardware resources before running the training scripts.

1. DIV2K experiments

Train: python train_liif.py --config configs/train-div2k/train_edsr-baseline-liif.yaml (with EDSR-baseline backbone, for RDN replace edsr-baseline with rdn). We use 1 GPU for training EDSR-baseline-LIIF and 4 GPUs for RDN-LIIF.

Test: bash scripts/test-div2k.sh [MODEL_PATH] [GPU] for div2k validation set, bash scripts/test-benchmark.sh [MODEL_PATH] [GPU] for benchmark datasets. [MODEL_PATH] is the path to a .pth file, we use epoch-last.pth in corresponding save folder.

2. celebAHQ experiments

Train: python train_liif.py --config configs/train-celebAHQ/[CONFIG_NAME].yaml.

Test: python test.py --config configs/test/test-celebAHQ-32-256.yaml --model [MODEL_PATH] (or test-celebAHQ-64-128.yaml for another task). We use epoch-best.pth in corresponding save folder.

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
This repository contains a CBIR system that uses swin transformer to extract image's feature.

Swin-transformer based CBIR This repository contains a CBIR(content-based image retrieval) system. Here we use Swin-transformer to extract query image

JsHou 12 Nov 17, 2022
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o

twang 98 Sep 17, 2022
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection This is a PyTorch implementation of the LipForensics paper. This is an U

Minha Kim 2 May 11, 2022
Data Augmentation Using Keras and Python

Data-Augmentation-Using-Keras-and-Python Data augmentation is the process of increasing the number of training dataset. Keras library offers a simple

Happy N. Monday 3 Feb 15, 2022
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu

1 Feb 11, 2022