Corner-based Region Proposal Network

Related tags

Computer Visioncrpn
Overview

Corner-based Region Proposal Network

CRPN is a two-stage detection framework for multi-oriented scene text. It employs corners to estimate the possible locations of text instances and a region-wise subnetwork for further classification and regression. In our experiments, it achieves F-measure of 0.876 and 0.845 on ICDAR 2013 and 2015 respectively. The paper is available at arXiv.

Installation

This code is based on Caffe and py-faster-rcnn. It has been tested on Ubuntu 16.04 with CUDA 8.0.

  1. Clone this repository

    git clone https://github.com/xhzdeng/crpn.git
    
  2. Build Caffe and pycaffe

    cd $CRPN_ROOT/caffe-fast-rcnn
    make -j8 && make pycaffe
    
  3. Build the Cython modules

    cd $CRPN_ROOT/lib
    make
    
  4. Prepare your own training data directory. For convenience, it should have this basic structure.

    $VOCdevkit/
    $VOCdevkit/VOC2007                    # image sets, annotations, etc. 
    

    And create symlinks for YOUR dataset

    cd $CRPN_ROOT/data
    ln -s [path] VOCdevkit
    
  5. Download pretrained ImageNet VGG-16 model. You can find it at Caffe Model Zoo.

  6. Train with YOUR dataset

    cd $CRPN_ROOT
    ./experiments/scripts/train.sh [NET] [MODEL] [DATASET] [ITER_NUM]
    # NET is the network arch to use, only {vgg16} in this implemention
    # MODEL is the pre-trained model you want to use to initial your weights
    # DATASET points to your dataset, please refer the contents of train.sh
    # IETR_NUM 
    
  7. Test with YOUR models

    cd $CRPN_ROOT
    ./experiments/scripts/test.sh [NET] [MODEL] [DATASET]
    # NET is the network arch to use, only {vgg16} in this implemention
    # MODEL is the testing model
    # DATASET points to your dataset, please refer the contents of test.sh
    

    Test outputs are saved under:

    output/<experiment directory>/<dataset name>/<network snapshot name>/
    

Demo

```
cd $CRPN_ROOT
./tools/demo.py --net [NET] --model [MODEL]
# NET is the network arch to use, only {vgg16} in this implemention
# MODEL is the path of caffemodel you want to use
```

Models

Now, you can download the pretrained model from OneDrive or BaiduYun, which is trained 100k iters on SynthText. I also have uploaded a testing model trained recently. It achieves an F-measure of 0.8456 at 840p resolution on ICDAR 2015, similar performance but slightly faster than we depicted in the paper.

Citation

If you find the paper and code useful in your research, please consider citing:

@article{deng2018crpn,
    Title = {Detecting Multi-Oriented Text with Corner-based Region Proposals},
    Author = {Linjie Deng and Yanxiang Gong and Yi Lin and Jingwen Shuai and Xiaoguang Tu and Yufei Zhang and Zheng Ma and Mei Xie},
    Journal = {arXiv preprint arXiv:1804.02690},
    Year = {2018}
}
Owner
xhzdeng
xhzdeng
A simple component to display annotated text in Streamlit apps.

Annotated Text Component for Streamlit A simple component to display annotated text in Streamlit apps. For example: Installation First install Streaml

Thiago Teixeira 312 Dec 30, 2022
Face Anonymizer - FaceAnonApp v1.0

Face Anonymizer - FaceAnonApp v1.0 Blur faces from image and video files in /data/files folder. Contents Repo of the source files for the FaceAnonApp.

6 Apr 18, 2022
Python package for handwriting and sketching in Jupyter cells

ipysketch A Python package for handwriting and sketching in Jupyter notebooks. Usage A movie is worth a thousand pictures is worth a million words...

Matthias Baer 16 Jan 05, 2023
Run tesseract with the tesserocr bindings with @OCR-D's interfaces

ocrd_tesserocr Crop, deskew, segment into regions / tables / lines / words, or recognize with tesserocr Introduction This package offers OCR-D complia

OCR-D 38 Oct 14, 2022
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

Jia Research Lab 182 Dec 29, 2022
A curated list of resources for text detection/recognition (optical character recognition ) with deep learning methods.

awesome-deep-text-detection-recognition A curated list of awesome deep learning based papers on text detection and recognition. Text Detection Papers

2.4k Jan 08, 2023
ERQA - Edge Restoration Quality Assessment

ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR, deblurring, denoising, etc) are restoring real details.

MSU Video Group 27 Dec 17, 2022
nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex.

faceprocessor nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex. Tech faceprocessor uses a number of open source projec

NoFaceDB 3 Sep 06, 2021
Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.

Sign Language Recognition Service This is a Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform s

Martin Lønne 1 Jan 08, 2022
Image Smoothing and Blurring Using OpenCV

Image-Smoothing-and-Blurring-Using-OpenCV This repository contains codes for performing image smoothing and blurring using OpenCV. There are different

Happy N. Monday 3 Feb 15, 2022
This is a pytorch re-implementation of EAST: An Efficient and Accurate Scene Text Detector.

EAST: An Efficient and Accurate Scene Text Detector Description: This version will be updated soon, please pay attention to this work. The motivation

Dejia Song 544 Dec 20, 2022
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
📷 Face Recognition using Haar-Cascade Classifier, OpenCV, and Python

Face-Recognition-System Face Recognition using Haar-Cascade Classifier, OpenCV and Python. This project is based on face detection and face recognitio

1 Jan 10, 2022
Text Detection from images using OpenCV

EAST Detector for Text Detection OpenCV’s EAST(Efficient and Accurate Scene Text Detection ) text detector is a deep learning model, based on a novel

Abhishek Singh 88 Oct 20, 2022
chineseocr/table_line 表格线检测模型pytorch版

table_line_pytorch chineseocr/table_detct 表格线检测模型table_line pytorch版 原项目github: https://github.com/chineseocr/table-detect 1、模型转换 下载原项目table_detect模型文

1 Oct 21, 2021
Semantic-based Patch Detection for Binary Programs

PMatch Semantic-based Patch Detection for Binary Programs Requirement tensorflow-gpu 1.13.1 numpy 1.16.2 scikit-learn 0.20.3 ssdeep 3.4 Usage tar -xvz

Mr.Curiosity 3 Sep 02, 2022
👄 The most accurate natural language detection library for Java and the JVM, suitable for long and short text alike

Quick Info this library tries to solve language detection of very short words and phrases, even shorter than tweets makes use of both statistical and

Peter M. Stahl 532 Dec 28, 2022
A webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV.

Qbr Qbr, pronounced as Cuber, is a webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV. 🌈 Accurate color detection 🔍 Accurate 3x3x

Kim 金可明 502 Dec 29, 2022
CNN+Attention+Seq2Seq

Attention_OCR CNN+Attention+Seq2Seq The model and its tensor transformation are shown in the figure below It is necessary ch_ train and ch_ test the p

Tsukinousag1 2 Jul 14, 2022
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval (arXiv) Repository to contain the code, models, data for end-to-end

225 Dec 25, 2022