2021 Real Robot Challenge Phase2 attemp

Overview

Real_Robot_Challenge_Phase2_AE_attemp

We(team name:thriftysnipe) are the first place winner of Phase1 in 2021 Real Robot Challenge.
Please see this page for more details: https://real-robot-challenge.com/leaderboard
To see more details about out Phase1 works: https://github.com/wq13552463699/Real_Robot_challenge
We were granted the access to Phase 2.

I am sorry, the project is too complex with too much large files, It is too hard to upload them all on Github. I just attached a part of the core code here for you to take a quick lreview. If you think my attempts is approriate, you can go to this Google Drive to download the full project file(all codes, results, trained models, environmental files,.etc):
https://drive.google.com/file/d/14vjCrWU6vzMdXxVSR2FeskMvuQpgqWqM/view?usp=sharing

RRC phase2 task description:

Randomly place 25 dices with the size of 0.01x0.01x0.01m in the environment. Use own controller to drive the three-finger robot to rearrange the dice to a specific pattern. Unfortunately, due to the set task is too difficult, no team could complete the task on the actual robot, so all teams with record are awarded third place in this phase. But I think our attempt has a reference value, if later scholars conduct related research, our method may be useful.

Our considerations:

We consider using a reinforcement learning algorithm as the controller in this phase. However, in this phase, information that can play as observations, such as coordinates and orientation of the dices, cannot be obtained from the environment directly but they are crucial for RL to run.
The alternative observations we can use are the images of the three cameras set in 3 different angles in the environment and their segmentation masks. We picked segmentation masks rather than the raw images since the attendance of noise and redundancy in the raw images were too much. Please see the following segmentation mask example(RGB's 3 channels represent segmentation masks from 3 different angles).

The segmentation masks have the dimension of 270x270x3, if directly passing it to the RL agent, which would lead to computational explosion and hard to converge. Hence, we planned to use some means to extract the principal components that can play as observations from it. In addition, the observation value also includes readable read-robot data(joint angle of the robot arm, end effector position, end effector speed, etc.).

Segmentation mask dimensionality reduction

This is the most important part of this task. We tried different methods, such as GAN, VAE, AE, to extract the principal conponents from the images. The quality of data dimensionality reduction can be easily seem from the discripency of reconstructed and oringinal images or the loss curves. After many trials(adjusting hyperparameters, network structure, depth, etc.), we got different trained VAE, GAN and AE models. We conducted offline tests on the obtained model and compared the results, we were surprised to find that the AE performed the best. When the latent of AE is 384, the quality of the reconstructed image is the best. The result is shown in the figure below.

The loss function also converges to an acceptable range:

Build up observation and trian RL agent.

We use the best AE encoder to deal with the segmentation masks to generate the observation and stitch with the readable data. The structure of the overall obervation is shown as follow:
We fed the above observations to several current cutting-edge model based and model free reinforcement learning algorithms, including DDPG+HER, PPO, SLAC, PlaNet and Dreamer. We thought it would work and enable the agent to learn for somewhat anyway. But it is a pity that after many attempts, the model still didn't have any trend to converge. Due to time limited, our attempts were over here.

Some reasons might lead to fail

  1. We used AE as the observation model. Although the AE's dimensionality reduction capability were the best, the latent space of AE were disordered and didn't make sense to RL agent. The observations passed to the RL must be fixed and orderly. Continuous delivery of unfixed data caused a dimensional disaster. For example, the third number in the observation vector passed at t1 represents 'infos of the 1st dice', and the number on the same position at t2 represents the 'infos of the 3rd dice'. This disorderly change with time makes RL very confused.
  2. The extracted latent space from segmentation mask dominates the observations, making RL ignore the existence of robots. The latent space size is 384, but which for the robot data is 27. The two are far apart, and there is a big data bias.
  3. Robot arm blocked the dices, segmentation masks can only represent a part of the dice. This problem cannot be avoided and can only be solved by more powerful image processing technology. This is also a major challenge in the current Image-based RL industry

Contribution

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. Please make sure to update tests as appropriate.

Owner
Qiang Wang
PhD at UCD. Research interest: Reinforcement Learning; Computer vision&Touch; Representation learning
Qiang Wang
Keystroke logging, often referred to as keylogging or keyboard capturing

Keystroke logging, often referred to as keylogging or keyboard capturing, is the action of recording the keys struck on a keyboard, typically covertly, so that a person using the keyboard is unaware

Bhumika R 2 Jan 11, 2022
DIY split-flap display

The goal is to make a low-cost display that's easy to fabricate at home in small/single quantities (e.g. custom materials can be ordered from Ponoko or similar, and other hardware is generally availa

Scott Bezek 2.5k Jan 05, 2023
This application works with serial communication. Use a simple gui to send and receive serial data from arduino and control leds and motor direction

This application works with serial communication. Use a simple gui to send and receive serial data from arduino and control leds and motor direction

ThyagoKZKR 2 Jul 18, 2022
Kwcpu - An unobtrusive CPU meter that fits in the default Windows 11 taskbar. Supports up to 32 cores.

kwcpu An unobtrusive CPU meter that fits in the default Windows 11 taskbar. Supports up to 32 cores. kwcpu is provided as a Rainmeter skin. By default

Jay Oster 2 Nov 07, 2022
iot-dashboard: Fully integrated architecture platform with a dashboard for Logistics Monitoring, Internet of Things.

Fully integrated architecture platform with a dashboard for Logistics Monitoring, Internet of Things. Written in Python. Flask applicati

2 Jul 29, 2022
Get the AltAz coordinates for a given object using astropy and output on a OLED screen.

Star Coordinates Get the AltAz coordinates for a given object using astropy and output on a OLED screen. As a very very newcomer to the astronomy scen

Craig Cmehil 1 Jan 31, 2022
Home Assistant custom integration to fetch data from Powerpal

Powerpal custom component for Home Assistant Component to integrate with powerpal. This repository and integration is not affiliated with Powerpal. Th

Lawrence 32 Jan 07, 2023
Pi-hole with Inky pHAT ePaper display

Pi-hole with Inky pHAT ePaper display This is my Pi-hole with an ePaper display.

11 Sep 13, 2022
Turns a compatible Raspberry Pi device into a smart USB drive for PS4/PS5.

PSBerry A WIP project for Raspberry Pi, which turns a compatible RPI device into a smart USB drive for PS4/PS5. Allows for save management of PS4 game

Filip Tomaszewski 2 Jan 15, 2022
Hardware-accelerated ROS2 packages for camera image processing.

Isaac ROS Image Pipeline Overview This metapackage offers similar functionality as the standard, CPU-based image_pipeline metapackage, but does so by

NVIDIA Isaac ROS 52 Dec 15, 2022
Sticklog2heatmap - Draw a heatmap of RC sticks from OpenTX logs or USB HID device

sticklog2heatmap Draw a heatmap of RC sticks from OpenTX logs or USB HID device

2 Feb 02, 2022
Python module for the qwiic serial control motor driver

Qwiic_SCMD_Py Python module for the qwiic motor driver This python package is a port of the existing SparkFun Serial Controlled Motor Driver Arduino L

SparkFun Electronics 6 Dec 06, 2022
Testing out some (stolen) DMA code for RP2040 Micropython

RP2040_micropython_dma testing out some (stolen) DMA code for RP2040 Micropython. Heavy inspiration and some code from https://iosoft.blog/2021/10/26/

2 Dec 29, 2022
Custom component for interacting with Octopus Energy

Home Assistant Octopus Energy ** WARNING: This component is currently a work in progress ** Custom component built from the ground up to bring your Oc

David Kendall 116 Jan 02, 2023
Custom component for MPC-HC for home-assistant

mpc_hc The current mpchc integration in homeassistant violates ADR0004, so it will be deleted from core. This is just the existing integration copied

3 Dec 15, 2022
ROS2 nodes for Waveshare Alphabot2-Pi mobile robot.

ROS2 for Waveshare Alphabot2-Pi This repo contains ROS2 packages for the Waveshare Alphabot2-Pi mobile robot: alphabot2: it contains the nodes used to

Michele Rizzo 2 Oct 11, 2022
What if home automation was homoiconic? Just transformations of data? No more YAML!

radiale what if home-automation was also homoiconic? The upper or proximal row contains three bones, to which Gegenbaur has applied the terms radiale,

Felix Barbalet 21 Mar 26, 2022
Estimation of whether or not the persons given information will have diabetes.

Diabetes Business Problem : It is desired to develop a machine learning model that can predict whether people have diabetes when their characteristics

Barış TOKATLIOĞLU 0 Jan 20, 2022
A dashboard for Raspberry Pi to display environmental weather data, rain radar, weather forecast, etc. written in Python

Weather Clock for Raspberry PI This project is a dashboard for Raspberry Pi to display environmental weather data, rain radar, weather forecast, etc.

Markus Geiger 1 May 01, 2022
NYCT-GTFS - Real-time NYC subway data parsing for humans

NYCT-GTFS - Real-time NYC subway data parsing for humans This python library provides a human-friendly, native python interface for dealing with the N

Andrew Dickinson 37 Dec 27, 2022