Audio fingerprinting and recognition in Python

Related tags

Audiodejavu
Overview

dejavu

Audio fingerprinting and recognition algorithm implemented in Python, see the explanation here:
How it works

Dejavu can memorize audio by listening to it once and fingerprinting it. Then by playing a song and recording microphone input or reading from disk, Dejavu attempts to match the audio against the fingerprints held in the database, returning the song being played.

Note: for voice recognition, Dejavu is not the right tool! Dejavu excels at recognition of exact signals with reasonable amounts of noise.

Quickstart with Docker

First, install Docker.

# build and then run our containers
$ docker-compose build
$ docker-compose up -d

# get a shell inside the container
$ docker-compose run python /bin/bash
Starting dejavu_db_1 ... done
[email protected]:/code# python example_docker_postgres.py 
Fingerprinting channel 1/2 for test/woodward_43s.wav
Fingerprinting channel 1/2 for test/sean_secs.wav
...

# connect to the database and poke around
[email protected]:/code# psql -h db -U postgres dejavu
Password for user postgres:  # type "password", as specified in the docker-compose.yml !
psql (11.7 (Debian 11.7-0+deb10u1), server 10.7)
Type "help" for help.

dejavu=# \dt
            List of relations
 Schema |     Name     | Type  |  Owner   
--------+--------------+-------+----------
 public | fingerprints | table | postgres
 public | songs        | table | postgres
(2 rows)

dejavu=# select * from fingerprints limit 5;
          hash          | song_id | offset |        date_created        |       date_modified        
------------------------+---------+--------+----------------------------+----------------------------
 \x71ffcb900d06fe642a18 |       1 |    137 | 2020-06-03 05:14:19.400153 | 2020-06-03 05:14:19.400153
 \xf731d792977330e6cc9f |       1 |    148 | 2020-06-03 05:14:19.400153 | 2020-06-03 05:14:19.400153
 \x71ff24aaeeb55d7b60c4 |       1 |    146 | 2020-06-03 05:14:19.400153 | 2020-06-03 05:14:19.400153
 \x29349c79b317d45a45a8 |       1 |    101 | 2020-06-03 05:14:19.400153 | 2020-06-03 05:14:19.400153
 \x5a052144e67d2248ccf4 |       1 |    123 | 2020-06-03 05:14:19.400153 | 2020-06-03 05:14:19.400153
(10 rows)

# then to shut it all down...
$ docker-compose down

If you want to be able to use the microphone with the Docker container, you'll need to do a little extra work. I haven't had the time to write this up, but if anyone wants to make a PR, I'll happily merge.

Docker alternative on local machine

Follow instructions in INSTALLATION.md

Next, you'll need to create a MySQL database where Dejavu can store fingerprints. For example, on your local setup:

$ mysql -u root -p
Enter password: **********
mysql> CREATE DATABASE IF NOT EXISTS dejavu;

Now you're ready to start fingerprinting your audio collection!

You may also use Postgres, of course. The same method applies.

Fingerprinting

Let's say we want to fingerprint all of July 2013's VA US Top 40 hits.

Start by creating a Dejavu object with your configurations settings (Dejavu takes an ordinary Python dictionary for the settings).

>>> from dejavu import Dejavu
>>> config = {
...     "database": {
...         "host": "127.0.0.1",
...         "user": "root",
...         "password": <password above>, 
...         "database": <name of the database you created above>,
...     }
... }
>>> djv = Dejavu(config)

Next, give the fingerprint_directory method three arguments:

  • input directory to look for audio files
  • audio extensions to look for in the input directory
  • number of processes (optional)
>>> djv.fingerprint_directory("va_us_top_40/mp3", [".mp3"], 3)

For a large amount of files, this will take a while. However, Dejavu is robust enough you can kill and restart without affecting progress: Dejavu remembers which songs it fingerprinted and converted and which it didn't, and so won't repeat itself.

You'll have a lot of fingerprints once it completes a large folder of mp3s:

>>> print djv.db.get_num_fingerprints()
5442376

Also, any subsequent calls to fingerprint_file or fingerprint_directory will fingerprint and add those songs to the database as well. It's meant to simulate a system where as new songs are released, they are fingerprinted and added to the database seemlessly without stopping the system.

Configuration options

The configuration object to the Dejavu constructor must be a dictionary.

The following keys are mandatory:

  • database, with a value as a dictionary with keys that the database you are using will accept. For example with MySQL, the keys must can be anything that the MySQLdb.connect() function will accept.

The following keys are optional:

  • fingerprint_limit: allows you to control how many seconds of each audio file to fingerprint. Leaving out this key, or alternatively using -1 and None will cause Dejavu to fingerprint the entire audio file. Default value is None.
  • database_type: mysql (the default value) and postgres are supported. If you'd like to add another subclass for BaseDatabase and implement a new type of database, please fork and send a pull request!

An example configuration is as follows:

>>> from dejavu import Dejavu
>>> config = {
...     "database": {
...         "host": "127.0.0.1",
...         "user": "root",
...         "password": "Password123", 
...         "database": "dejavu_db",
...     },
...     "database_type" : "mysql",
...     "fingerprint_limit" : 10
... }
>>> djv = Dejavu(config)

Tuning

Inside config/settings.py, you may want to adjust following parameters (some values are given below).

FINGERPRINT_REDUCTION = 30
PEAK_SORT = False
DEFAULT_OVERLAP_RATIO = 0.4
DEFAULT_FAN_VALUE = 5
DEFAULT_AMP_MIN = 10
PEAK_NEIGHBORHOOD_SIZE = 10

These parameters are described within the file in detail. Read that in-order to understand the impact of changing these values.

Recognizing

There are two ways to recognize audio using Dejavu. You can recognize by reading and processing files on disk, or through your computer's microphone.

Recognizing: On Disk

Through the terminal:

$ python dejavu.py --recognize file sometrack.wav 
{'total_time': 2.863781690597534, 'fingerprint_time': 2.4306554794311523, 'query_time': 0.4067542552947998, 'align_time': 0.007731199264526367, 'results': [{'song_id': 1, 'song_name': 'Taylor Swift - Shake It Off', 'input_total_hashes': 76168, 'fingerprinted_hashes_in_db': 4919, 'hashes_matched_in_input': 794, 'input_confidence': 0.01, 'fingerprinted_confidence': 0.16, 'offset': -924, 'offset_seconds': -30.00018, 'file_sha1': b'3DC269DF7B8DB9B30D2604DA80783155912593E8'}, {...}, ...]}

or in scripting, assuming you've already instantiated a Dejavu object:

>>> from dejavu.logic.recognizer.file_recognizer import FileRecognizer
>>> song = djv.recognize(FileRecognizer, "va_us_top_40/wav/Mirrors - Justin Timberlake.wav")

Recognizing: Through a Microphone

With scripting:

>>> from dejavu.logic.recognizer.microphone_recognizer import MicrophoneRecognizer
>>> song = djv.recognize(MicrophoneRecognizer, seconds=10) # Defaults to 10 seconds.

and with the command line script, you specify the number of seconds to listen:

$ python dejavu.py --recognize mic 10

Testing

Testing out different parameterizations of the fingerprinting algorithm is often useful as the corpus becomes larger and larger, and inevitable tradeoffs between speed and accuracy come into play.

Confidence

Test your Dejavu settings on a corpus of audio files on a number of different metrics:

  • Confidence of match (number fingerprints aligned)
  • Offset matching accuracy
  • Song matching accuracy
  • Time to match

Accuracy

An example script is given in test_dejavu.sh, shown below:

#####################################
### Dejavu example testing script ###
#####################################

###########
# Clear out previous results
rm -rf ./results ./temp_audio

###########
# Fingerprint files of extension mp3 in the ./mp3 folder
python dejavu.py --fingerprint ./mp3/ mp3

##########
# Run a test suite on the ./mp3 folder by extracting 1, 2, 3, 4, and 5 
# second clips sampled randomly from within each song 8 seconds 
# away from start or end, sampling offset with random seed = 42, and finally, 
# store results in ./results and log to ./results/dejavu-test.log
python run_tests.py \
    --secs 5 \
    --temp ./temp_audio \
    --log-file ./results/dejavu-test.log \
    --padding 8 \
    --seed 42 \
    --results ./results \
    ./mp3

The testing scripts are as of now are a bit rough, and could certainly use some love and attention if you're interested in submitting a PR! For example, underscores in audio filenames currently breaks the test scripts.

How does it work?

The algorithm works off a fingerprint based system, much like:

The "fingerprints" are locality sensitive hashes that are computed from the spectrogram of the audio. This is done by taking the FFT of the signal over overlapping windows of the song and identifying peaks. A very robust peak finding algorithm is needed, otherwise you'll have a terrible signal to noise ratio.

Here I've taken the spectrogram over the first few seconds of "Blurred Lines". The spectrogram is a 2D plot and shows amplitude as a function of time (a particular window, actually) and frequency, binned logrithmically, just as the human ear percieves it. In the plot below you can see where local maxima occur in the amplitude space:

Spectrogram

Finding these local maxima is a combination of a high pass filter (a threshold in amplitude space) and some image processing techniques to find maxima. A concept of a "neighboorhood" is needed - a local maxima with only its directly adjacent pixels is a poor peak - one that will not survive the noise of coming through speakers and through a microphone.

If we zoom in even closer, we can begin to imagine how to bin and discretize these peaks. Finding the peaks itself is the most computationally intensive part, but it's not the end. Peaks are combined using their discrete time and frequency bins to create a unique hash for that particular moment in the song - creating a fingerprint.

Spectgram zoomed

For a more detailed look at the making of Dejavu, see my blog post here.

How well it works

To truly get the benefit of an audio fingerprinting system, it can't take a long time to fingerprint. It's a bad user experience, and furthermore, a user may only decide to try to match the song with only a few precious seconds of audio left before the radio station goes to a commercial break.

To test Dejavu's speed and accuracy, I fingerprinted a list of 45 songs from the US VA Top 40 from July 2013 (I know, their counting is off somewhere). I tested in three ways:

  1. Reading from disk the raw mp3 -> wav data, and
  2. Playing the song over the speakers with Dejavu listening on the laptop microphone.
  3. Compressed streamed music played on my iPhone

Below are the results.

1. Reading from Disk

Reading from disk was an overwhelming 100% recall - no mistakes were made over the 45 songs I fingerprinted. Since Dejavu gets all of the samples from the song (without noise), it would be nasty surprise if reading the same file from disk didn't work every time!

2. Audio over laptop microphone

Here I wrote a script to randomly chose n seconds of audio from the original mp3 file to play and have Dejavu listen over the microphone. To be fair I only allowed segments of audio that were more than 10 seconds from the starting/ending of the track to avoid listening to silence.

Additionally my friend was even talking and I was humming along a bit during the whole process, just to throw in some noise.

Here are the results for different values of listening time (n):

Matching time

This is pretty rad. For the percentages:

Number of Seconds Number Correct Percentage Accuracy
1 27 / 45 60.0%
2 43 / 45 95.6%
3 44 / 45 97.8%
4 44 / 45 97.8%
5 45 / 45 100.0%
6 45 / 45 100.0%

Even with only a single second, randomly chosen from anywhere in the song, Dejavu is getting 60%! One extra second to 2 seconds get us to around 96%, while getting perfect only took 5 seconds or more. Honestly when I was testing this myself, I found Dejavu beat me - listening to only 1-2 seconds of a song out of context to identify is pretty hard. I had even been listening to these same songs for two days straight while debugging...

In conclusion, Dejavu works amazingly well, even with next to nothing to work with.

3. Compressed streamed music played on my iPhone

Just to try it out, I tried playing music from my Spotify account (160 kbit/s compressed) through my iPhone's speakers with Dejavu again listening on my MacBook mic. I saw no degredation in performance; 1-2 seconds was enough to recognize any of the songs.

Performance

Speed

On my MacBook Pro, matching was done at 3x listening speed with a small constant overhead. To test, I tried different recording times and plotted the recording time plus the time to match. Since the speed is mostly invariant of the particular song and more dependent on the length of the spectrogram created, I tested on a single song, "Get Lucky" by Daft Punk:

Matching time

As you can see, the relationship is quite linear. The line you see is a least-squares linear regression fit to the data, with the corresponding line equation:

1.364757 * record_time - 0.034373 = time_to_match

Notice of course since the matching itself is single threaded, the matching time includes the recording time. This makes sense with the 3x speed in purely matching, as:

1 (recording) + 1/3 (matching) = 4/3 ~= 1.364757

if we disregard the miniscule constant term.

The overhead of peak finding is the bottleneck - I experimented with multithreading and realtime matching, and alas, it wasn't meant to be in Python. An equivalent Java or C/C++ implementation would most likely have little trouble keeping up, applying FFT and peakfinding in realtime.

An important caveat is of course, the round trip time (RTT) for making matches. Since my MySQL instance was local, I didn't have to deal with the latency penalty of transfering fingerprint matches over the air. This would add RTT to the constant term in the overall calculation, but would not effect the matching process.

Storage

For the 45 songs I fingerprinted, the database used 377 MB of space for 5.4 million fingerprints. In comparison, the disk usage is given below:

Audio Information Type Storage in MB
mp3 339
wav 1885
fingerprints 377

There's a pretty direct trade-off between the necessary record time and the amount of storage needed. Adjusting the amplitude threshold for peaks and the fan value for fingerprinting will add more fingerprints and bolster the accuracy at the expense of more space.

Manipulate audio with a simple and easy high level interface

Pydub Pydub lets you do stuff to audio in a way that isn't stupid. Stuff you might be looking for: Installing Pydub API Documentation Dependencies Pla

James Robert 6.6k Jan 01, 2023
GNU Radio – the Free and Open Software Radio Ecosystem

GNU Radio is a free & open-source software development toolkit that provides signal processing blocks to implement software radios. It can be used wit

GNU Radio 4.1k Jan 06, 2023
Anki vector Music ❤ is the best and only Telegram VC player with playlists, Multi Playback, Channel play and more

Anki Vector Music 🎵 A bot that can play music on Telegram Group and Channel Voice Chats Available on telegram as @Anki Vector Music Features 🔥 Thumb

Damantha Jasinghe 12 Nov 12, 2022
Use android as mic/speaker for ubuntu

Pulse Audio Control Panel Platforms Requirements sudo apt install ffmpeg pactl (already installed) Download Download the AppImage from release page ch

19 Dec 01, 2022
Expressive Digital Signal Processing (DSP) package for Python

AudioLazy Development Last release PyPI status Real-Time Expressive Digital Signal Processing (DSP) Package for Python! Laziness and object representa

Danilo de Jesus da Silva Bellini 642 Dec 26, 2022
Spotipy - Player de música simples em Python

Spotipy Player de música simples em Python, utilizando a biblioteca Pysimplegui para a interface gráfica. Este tocador é bastante simples em si, mas p

Adelino Almeida 4 Feb 28, 2022
An app made in Python using the PyTube and Tkinter libraries to download videos and MP3 audio.

yt-dl (GUI Edition) An app made in Python using the PyTube and Tkinter libraries to download videos and MP3 audio. How do I download this? Windows: Fi

1 Oct 23, 2021
Scrap electronic music charts into CSV files

musiccharts A small python script to scrap (electronic) music charts into directories with csv files. Installation Download MusicCharts.exe Run MusicC

Dustin Scharf 1 May 11, 2022
Spotify Song Recommendation Program

Spotify-Song-Recommendation-Program Made by Esra Nur Özüm Written in Python The aim of this project was to build a recommendation system that recommen

esra nur özüm 1 Jun 30, 2022
PyAbsorp is a python module that has the main focus to help estimate the Sound Absorption Coefficient.

This is a package developed to be use to find the Sound Absorption Coefficient through some implemented models, like Biot-Allard, Johnson-Champoux and

Michael Markus Ackermann 8 Oct 19, 2022
controls volume using hand gestures

controls volume using hand gestures

1 Oct 11, 2021
Some utils for auto speech recognition

About Some utils for auto speech recognition. Utils Util Description Script Reset audio Reset sample rate, sample width, etc of audios.

1 Jan 24, 2022
The venturimeter works on the principle of Bernoulli's equation, i.e., the pressure decreases as the velocity increases.

The venturimeter works on the principle of Bernoulli's equation, i.e., the pressure decreases as the velocity increases. The cross-section of the throat is less than the cross-section of the inlet pi

Shankar Mahadevan L 1 Dec 03, 2021
Gammatone-based spectrograms, using gammatone filterbanks or Fourier transform weightings.

Gammatone Filterbank Toolkit Utilities for analysing sound using perceptual models of human hearing. Jason Heeris, 2013 Summary This is a port of Malc

Jason Heeris 188 Dec 14, 2022
Telegram Bot to play music in VoiceChat with Channel Support and autostarts Radio.

VCPlayerBot Telegram bot to stream videos in telegram voicechat for both groups and channels. Supports live streams, YouTube videos and telegram media

Abdisamad Omar Mohamed 1 Oct 15, 2021
A music player designed for a University Project.

A music player designed for a University Project. Very flexibe and easy to use, a real life working application with user friendly controls. Hope u enjoy!!

Aditya Johorey 1 Nov 19, 2021
Marsyas - Music Analysis, Retrieval and Synthesis for Audio Signals

Welcome to MARSYAS. MARSYAS is a software framework for rapid prototyping of audio applications, with flexibility and extensibility as primary concer

Marsyas Developers Group 364 Oct 31, 2022
Anaphones are like anagrams, but for sounds.

Anaphones Anaphones are like anagrams but for sounds (phonemes). Examples include: salami-awesomely, atari-tiara, and beefy-phoebe. Anaphones can be a

James Murphy 18 Nov 02, 2022
Python CD-DA ripper preferring accuracy over speed

Whipper Whipper is a Python 3 (3.6+) CD-DA ripper based on the morituri project (CDDA ripper for *nix systems aiming for accuracy over speed). It star

671 Jan 04, 2023
A Youtube audio player for your terminal

AudioLine A lightweight Youtube audio player for your terminal Explore the docs » View Demo · Report Bug · Request Feature · Send a Pull Request About

Haseeb Khalid 26 Jan 04, 2023