Wannier & vASP Postprocessing module

Overview

WASPP module

Wannier90 & vASP Postprocessing module with functionalities I needed during my PhD.

Being updated Version: 0.5

Main functions:

Wannier90 - VASP interface preparation and evaluation.

  1. plot_pdos

For plotting pDOS select LORBIT = 11 in INCAR file

Main function for plotting the partial density of states, for desired atoms and orbitals at all the different Wyckoff positions. Usage is straightforward:

  • file = "vasprun.xml" of your VASP run.
  • _atoms = Atoms whose pDOS you wanna plot as a list of strings e.g. ["P","I","O","Rn","Al"].
  • _orbitals = Orbitals whose pDOS you wanna know from _atoms as a list of strings. They can be "big" orbitals (s,p,d,f) or "small" (px,py,pz,dxy,...), e.g ["s","px","d"].
  • e_window = Range of energies of interest.

If _atoms and _orbitals are None, the function will plot every atom and big orbital at every different Wyckoff position. For a better visualization each kind of big orbital is displayed with a different linestyle.

For example (Ta6Se24I2):

wap.plot_dos("vasprun.xml",e_window = (-7.5,4))

Returns:

TaSeI pDOS

The first tag in the legend is the atom, the second is the Wyckoff position and the third the orbital.

  1. band_counter

Counts the numebr of bands in a energy window in the whole FBZ. It gives a good clue of how to choose the energy window. Usage is as following:

wap.band_counter(file = "vasprun.xml", emin = 0.0, emax = 0.0)
  • file = "vasprun.xml" of your VASP run.
  • emin and emax are the lower and upper part of the energy window given in reference to Fermi energy.

For example:

wap.band_counter(file = "vasprun.xml", emin = -7.0, emax = 4.0)

Returns:

Efermi = 3.01610496.
Total bands = 544.
The number of bands between -7.00 eV (-3.98 eV) and 4.00 eV (7.02 eV) is 368.

Which is, the Fermi energy in eV, the total number of bands of the vasp run and the number of bands in the energy window (with real energies in parenthesis for wannier90.win)

  1. plot_wannierbands

Function for plotting wannier bands from .dat and .gnu files.

Usage:

wap.plot_wannierbands(file_dat = "wannier90_band.dat", gnu = "wannier90_band.gnu",efermi = 0.0, e_window = None, fig_size = (15,8),savename = "wannierbands.png")
  • file_dat: *_band.dat output file from a wannier90.x run.
  • file_dat: *_band.gnu output file from a wannier90.x run.
  • efermi: Fermi energy.
  • e_window = Energy window for the plot

It generates a "wannierbands.png" file.

4 . plot_vaspbands

Function for plotting VASP bands from a non self-consistent calculation in a KPATH. Usage:

wap.plot_vaspbands(outcar = "OUTCAR", kpoints = "KPOINTS")

  • outcar: OUTCAR file from VASP run.
  • kpoints: KPOINTS file from nsc VASP run (linemode expected).
  1. plot_comparison

Function for comparing VASP and Wannier90 bandstructures combining the previous functions and tags. Usage:

wap.plot_comparison(outcar = "OUTCAR", kpoints = "KPOINTS",file_dat = "wannier90_band.dat", gnu = "wannier90_band.gnu",efermi = 0.0, fig_size = (12,8), e_window = (-4,4),savename = "comparison.png"):
  • outcar: OUTCAR file from VASP run.
  • kpoints: KPOINTS file from nsc VASP run (linemode expected).
  • file_dat: *_band.dat output file from a wannier90.x run.
  • file_dat: *_band.gnu output file from a wannier90.x run.
  • efermi: Fermi energy.
  • e_window = Energy window for the plot

Example: RhSi

wap.plot_comparison(outcar = "OUTCAR", kpoints = "KPOINTS",file_dat = "wannier90_band.dat", gnu = "plottt/wannier90_band.gnu",efermi = 0.0, fig_size = (12,8), e_window = (-4,4),savename = "comparison.png") 

RhSi VASP vs Wannier90

  1. wann_kpoints

Function for generating kpath string for seedname.win using a KPOINT file from a nsc VASP calculation. Usage is as follows:

wann_kpoints(file = "KPOINTS")

Where KPOINTS is like:

Cubic
20   ! 20 grids
Line-mode
reciprocal
   0.000   0.000   0.000   ! GAMMA
   0.000   0.500   0.000   ! X
   0.000   0.500   0.000   ! X
   0.500   0.500   0.000   ! M
   0.500   0.500   0.000   ! M
   0.000   0.000   0.000   ! GAMMA
   0.000   0.000   0.000   ! GAMMA
   0.500   0.500   0.500   ! R
   0.500   0.500   0.500   ! R
   0.000   0.500   0.000   ! X
   0.500   0.500   0.000   ! M
   0.500   0.500   0.500   ! R

And it generates a WKPTS.txt file as:

G 0.000 0.000 0.000 X 0.000 0.500 0.000 
X 0.000 0.500 0.000 M 0.500 0.500 0.000 
M 0.500 0.500 0.000 G 0.000 0.000 0.000 
G 0.000 0.000 0.000 R 0.500 0.500 0.500 
R 0.500 0.500 0.500 X 0.000 0.500 0.000 
M 0.500 0.500 0.000 R 0.500 0.500 0.500 
  1. plot_custom_vaspbands

Similar to plot_vaspbands but more customizable. Usage is as follows:

wap.plot_custom_vaspbands(outcar = "OUTCAR",kpoints = "KPOINTS",
                          figsize = (10,7.5),ewindow = (-3,3),
                          dpi = 500,linewidth = 0.5,
                          kp_i=None,kp_f=None,
                          title=None,fname=None)

Where:

  • kp_i & kp_f is the number of the fist and last KPOINT in the path that you want to plot. E.g. in the KPOINTS file from above example kp_i = 2 would correspond to M.
  • title and fname are the title to be printed in the figure and the path to the figure when saved.

MBJ and PBE potentials bandstructure comparison.

compare_MBJ

Function for comparing PBE nscc and MBJ scc functional bandstructures using pymatgen treatment of vasprun.

wap.compare_MBJ(vasprun_pbe = "vasprun1.xml",
            vasprun_mbj = "vasprun2.xml",
            kpoint_file = "KPOINTS",
            e_window = (-4,4),
            fig_title = None,
            fig_name = "comparison.png")

Usage:

  • vasprun_pbe: vasprun file for PBE nsc run.
  • vasprun_mbj: vasprun file for MBJ scc run.
  • kpoint_file: kpoint file for nsc (linemode expected).

For example:

wap.compare(vasprun_pbe = "vasprun81_rel.xml",
            vasprun_mbj = "vasprun81.xml",
            kpoint_file = "KPOINTS",
            e_window = (-2,2),
            fig_title = "SG81",
            fig_name = "comparison81.png")

Returns:

VASP PBE vs MBJ potetntial

More functionalities are present in the code and many more are coming, stay tuned & take a look at WASPP05.py. (^³^)~♪

Package Requeriments:

  • numpy
  • matplotlib
  • scipy
  • itertools
  • re
  • pymatgen
Owner
Irián Sánchez Ramírez
PhD student @ DIPC
Irián Sánchez Ramírez
Analyze FnO trends by using NSE Bhav copy

BhavFnO Analyze FnO trends by using NSE Bhav copy Download entire BhavFnO folder and unzip it In that folder open command window

33 Jan 04, 2023
My qtile config with a fresh-looking bar and pywal support

QtileConfig My qtile config with a fresh-looking bar and pywal support. Note: This is my first rice and first github repo. Please excuse my poor codin

Eden 4 Nov 10, 2021
Objetivo: de forma colaborativa pasar de nodos de Dynamo a Python.

ITTI_Ed01_De-nodos-a-python ITTI. EXPERT TRAINING EN AUTOMATIZACIÓN DE PROCESOS BIM: OFFICIAL DE AUTODESK. Edición 1 Enlace al Master Enunciado: Traba

1 Jun 06, 2022
Ergonomic option parser on top of dataclasses, inspired by structopt.

oppapī Ergonomic option parser on top of dataclasses, inspired by structopt. Usage from typing import Optional from oppapi import from_args, oppapi @

yukinarit 4 Jul 19, 2022
IPO Checker for NEPSE

IPO Checker Checks more than one account for an IPO. Usage: ipo_checker.py [-h] --file FILE IPO Checker for a list. optional arguments: -h, --help

Sagar Tamang 4 Sep 20, 2022
Exam assignment for Laboratory of Bioinformatics 2

Exam assignment for Laboratory of Bioinformatics 2 (Alma Mater University of Bologna, Master in Bioinformatics)

2 Oct 22, 2022
Age of Empires II recorded game parsing and summarization in Python 3.

mgz Age of Empires II recorded game parsing and summarization in Python 3. Supported Versions Age of Kings (.mgl) The Conquerors (.mgx) Userpatch 1.4

148 Dec 11, 2022
E5 自动续期

请选择跳转 新版本系统 (2021-2-9采用): 以后更新都在AutoApi,采用v0.0版本号覆盖式更新 AutoApi : 最新版 保留1到2个稳定的简易版,防止萌新大范围报错 AutoApi'X' : 稳定版1 ( 即本版AutpApiP ) AutoApiP ( 即v5.0,稳定版 ) —

95 Feb 15, 2021
Amitkumar Mishra 2 Jan 14, 2022
通过简单的卷积神经网络直接预测出验证码图片中滑块的位置

使用说明 1. 在本地测试 运行python3 prdict_one.py即可,默认需要预测的图片路径位于testImg文件夹下的test1.png 运行python3 predict_folder.py预测testImg下的所有图片 2. 部署到服务器 运行python3 run_a_server

12 Mar 08, 2022
A simple program to run through inputs for a 3n+1 problem

Author Tyler Windemuth Collatz_Conjecture A simple program to run through inputs for a 3n+1 problem Purpose: doesn't really have a purpose, did this t

0 Apr 22, 2022
This is a working model for which I have used python.

Jarvis_voiceAssistance This is a working model for which I have used python. This model can: 1)Play a video or song on youtube. 2)Tell us time. 3)Tell

Hardik Jain 1 Jan 30, 2022
A lightweight and unlocked launcher for Lunar Client made in Python.

LCLPy LCL's Python Port of Lunar Client Lite. Releases: https://github.com/Aetopia/LCLPy/releases Build Install PyInstaller. pip install PyInstaller

21 Aug 03, 2022
This repository contains each day of Advent of Code 2021 that I've done.

Advent of Code - 2021 I will use this repository as my Advent of Code1 (AoC) repo for the 2021 challenge. I'm changing how I am tackling the problems

Brett Chapin 2 Jan 12, 2022
Semester long, web application project for CSCI 4370/6370 (Database Management)

Database_Project Prototype ideas for website: Computer Science library (Sells books, products, etc.) Code editor Graph visualizer / creator (can save

Jordan Harman 4 Feb 17, 2022
Providing a working, flexible, easier and faster installer than the one officially provided by Arch Linux

Purpose The purpose is to bring more people to Arch Linux by providing a working, flexible, easier and faster installer than the one officially provid

André Luís 0 Nov 09, 2022
This is a a CSMA/CA simulator written in Python based on simulator of the same type

This is a a CSMA/CA simulator written in Python based on simulator of the same type found the link https://github.com/StevenSLXie/CSMA-Simulator with

M. Ismail 4 Nov 22, 2022
AminoAutoRegFxck/AutoReg For AminoApps.com

AminoAutoRegFxck AminoAutoRegFxck/AutoReg For AminoApps.com Termux apt update -y apt upgrade -y pkg install python git clone https://github.com/LilZev

3 Jan 18, 2022
This is the course project of AI3602: Data Mining of SJTU

This is the course project of AI3602: Data Mining of SJTU. Group Members include Jinghao Feng, Mingyang Jiang and Wenzhong Zheng.

2 Jan 13, 2022
Python: Wrangled and unpivoted gaming datasets. Tableau: created dashboards - Market Beacon and Player’s Shopping Guide.

Created two information products for GameStop. Using Python, wrangled and unpivoted datasets, and created Tableau dashboards.

Zinaida Dvoskina 2 Jan 29, 2022