Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Overview

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Official implementation of paper Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks.

Quick Start

Simulation Experiments

Preparation

You'll need some external large data, which can be downloaded via:

See our Jupyter notebooks at ./notebooks for SRA implementations.

CIFAR-10

Follow ./notebooks/sra_cifar10.ipynb, you can try subnet replacement attacks on:

  • VGG-16
  • ResNet-110
  • Wide-ResNet-40
  • MobileNet-V2

ImageNet

We actually don't use ImageNet full train set. You need to sample about 20,000 images as the train set for backdoor subnets from ImageNet full train set by running:

python models/imagenet/prepare_data.py

(remember to configure the path to your ImageNet full train set first!)

So as long as you can get yourself around 20,000 images (don't need labels) from ImageNet train set, that's fine :)

Then follow ./notebooks/sra_imagenet.ipynb, you can try subnet replacement attacks on:

  • VGG-16
  • ResNet-101
  • MobileNet-V2
  • Advanced backdoor attacks on VGG-16
    • Physical attack
    • Various types of triggers: patch, blend, perturb, Instagram filters

VGG-Face

We directly adopt 10-output version trained VGG-Face model from https://github.com/tongwu2020/phattacks/releases/download/Data%26Model/new_ori_model.pt, and most work from https://github.com/tongwu2020/phattacks.

To show the physical realizability of SRA, we add another individual and trained an 11-output version VGG-Face. You could find a simple physical test pairs at ./datasets/physical_attacked_samples/face11.jpg and ./datasets/physical_attacked_samples/face11_phoenix.jpg.

Follow ./notebooks/sra_vggface.ipynb, you can try subnet replacement attacks on:

  • 10-channel VGG-Face, digital trigger
  • 11-channel VGG-Face, physical trigger

Defense

We also test Neural Cleanse, against SRA, attempting to reverse engineer our injected trigger. The code implementation is available at ./notebooks/neural_cleanse.ipynb, mostly borrowed from TrojanZoo. Some reverse engineered triggers generated by us are available under ./defenses.

System-Level Experiments

See ./system_attacks/README.md for details.

Results & Demo

Digital Triggers

CIFAR-10

Model Arch ASR(%) CAD(%)
VGG-16 100.00 0.24
ResNet-110 99.74 3.45
Wide-ResNet-40 99.66 0.64
MobileNet-V2 99.65 9.37

ImageNet

Model Arch Top1 ASR(%) Top5 ASR(%) Top1 CAD(%) Top5 CAD(%)
VGG-16 99.92 100.00 1.28 0.67
ResNet-101 100.00 100.00 5.68 2.47
MobileNet-V2 99.91 99.96 13.56 9.31

Physical Triggers

We generate physically transformed triggers in advance like:

Then we patch them to clean inputs for training, e.g.:

Physically robust backdoor attack demo:

See ./notebooks/sra_imagenet.ipynb for details.

More Triggers

See ./notebooks/sra_imagenet.ipynb for details.

Repository Structure

.
├── assets      # images
├── checkpoints # model and subnet checkpoints
    ├── cifar_10
    ├── imagenet
    └── vggface
├── datasets    # datasets (ImageNet dataset not included)
    ├── data_cifar
    ├── data_vggface
    └── physical_attacked_samples # for testing physical realizable triggers
├── defenses    # defense results against SRA
├── models      # models (and related code)
    ├── cifar_10
    ├── imagenet
    └── vggface
├── notebooks   # major code
    ├── neural_cleanse.ipynb
    ├── sra_cifar10.ipynb # SRA on CIFAR-10
    ├── sra_imagenet.ipynb # SRA on ImageNet
    └── sra_vggface.ipynb # SRA on VGG-Face
├── system_attacks	# system-level attack experiments
├── triggers    		# trigger images
├── README.md   		# this file
└── utils.py    		# code for subnet replacement, average meter etc.
Owner
Xiangyu Qi
PHD student @ Princeton ECE.
Xiangyu Qi
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
Code for database and frontend of webpage for Neural Fields in Visual Computing and Beyond.

Neural Fields in Visual Computing—Complementary Webpage This is based on the amazing MiniConf project from Hendrik Strobelt and Sasha Rush—thank you!

Brown University Visual Computing Group 29 Nov 30, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
A spatial genome aligner for analyzing multiplexed DNA-FISH imaging data.

jie jie is a spatial genome aligner. This package parses true chromatin imaging signal from noise by aligning signals to a reference DNA polymer model

Bojing Jia 9 Sep 29, 2022
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

46 Dec 14, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
Torch implementation of SegNet and deconvolutional network

Torch implementation of SegNet and deconvolutional network

Fedor Chervinskii 5 Jul 17, 2020
Music source separation is a task to separate audio recordings into individual sources

Music Source Separation Music source separation is a task to separate audio recordings into individual sources. This repository is an PyTorch implmeme

Bytedance Inc. 958 Jan 03, 2023
Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

SoohyunPark 1 Feb 07, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022