Fiber implements an proof-of-concept Python decorator that rewrites a function

Related tags

Miscellaneousfiber
Overview

Fiber

Fiber implements an proof-of-concept Python decorator that rewrites a function so that it can be paused and resumed (by moving stack variables to a heap frame and adding if statements to simulate jumps/gotos to specific lines of code).

Then, using a trampoline function that simulates the call stack on the heap, we can call functions that recurse arbitrarily deeply without stack overflowing (assuming we don't run out of heap memory).

cache = {}

@fiber.fiber(locals=locals())
def fib(n):
    assert n >= 0
    if n in cache:
        return cache[n]
    if n == 0:
        return 0
    if n == 1:
        return 1
    cache[n] = fib(n-1) + fib(n-2)
    return cache[n]

print(sys.getrecursionlimit())  # 1000 by default

# https://www.wolframalpha.com/input/?i=fib%281010%29+mod+10**5
print(trampoline.run(fib, [1010]) % 10 ** 5) # 74305

Please do not use this in production.

TOC

How it works

A quick refresher on the call stack: normally, when some function A calls another function B, A is "paused" while B runs to completion. Then, once B finishes, A is resumed.

In order to move the call stack to the heap, we need to transform function A to (1) store all variables on the heap, and (2) be able to resume execution at specific lines of code within the function.

The first step is easy: we rewrite all local loads and stores to instead load and store in a frame dictionary that is passed into the function. The second is more difficult: because Python doesn't support goto statements, we have to insert if statements to skip the code prefix that we don't want to execute.

There are a variety of "special forms" that cannot be jumped into. These we must handle by rewriting them into a form that we do handle.

For example, if we recursively call a function inside a for loop, we would like to be able to resume execution on the same iteration. However, when Python executes a for loop on an non-iterator iterable it will create a new iterator every time. To handle this case, we rewrite for loops into the equivalent while loop. Similarly, we must rewrite boolean expressions that short circuit (and, or) into the equivalent if statements.

Lastly, we must replace all recursive calls and normal returns by instead returning an instruction to a trampoline to call the child function or return the value to the parent function, respectively.

To recap, here are the AST passes we currently implement:

  1. Rewrite special forms:
    • for_to_while: Transforms for loops into the equivalent while loops.
    • promote_while_cond: Rewrites the while conditional to use a temporary variable that is updated every loop iteration so that we can control when it is evaluated (e.g. if the loop condition includes a recursive call).
    • bool_exps_to_if: Converts and and or expressions into the equivalent if statements.
  2. promote_to_temporary: Assigns the results of recursive calls into temporary variables. This is necessary when we make multiple recursive calls in the same statement (e.g. fib(n-1) + fib(n-2)): we need to resume execution in the middle of the expression.
  3. remove_trivial_temporaries: Removes temporaries that are assigned to only once and are directly assigned to some other variable, replacing subsequent usages with that other variable. This helps us detect tail calls.
  4. insert_jumps: Marks the statement after yield points (currently recursive calls and normal returns) with a pc index, and inserts if statements so that re-execution of the function will resume at that program counter.
  5. lift_locals_to_frame: Replaces loads and stores of local variables to loads and stores in the frame object.
  6. add_trampoline_returns: Replaces places where we must yield (recursive calls and normal returns) with returns to the trampoline function.
  7. fix_fn_def: Rewrites the function defintion to take a frame parameter.

See the examples directory for functions and the results after each AST pass. Also, see src/trampoline_test.py for some test cases.

Performance

A simple tail-recursive function that computes the sum of an array takes about 10-11 seconds to compute with Fiber. 1000 iterations of the equivalent for loop takes 7-8 seconds to compute. So we are slower by roughly a factor of 1000.

lst = list(range(1, 100001))

# fiber
@fiber.fiber(locals=locals())
def sum(lst, acc):
    if not lst:
        return acc
    return sum(lst[1:], acc + lst[0])

# for loop
total = 0
for i in lst:
    total += i

print(total, trampoline.run(sum, [lst, 0]))  # 5000050000, 5000050000

We could improve the performance of the code by eliminating redundant if checks in the generated code. Also, as we statically know the stack variables, we can use an array for the stack frame and integer indexes (instead of a dictionary and string hashes + lookups). This should improve the performance significantly, but there will still probably be a large amount of overhead.

Another performance improvement is to inline the stack array: instead of storing a list of frames in the trampoline, we could variables directly in the stack. Again, we can compute the frame size statically. Based on some tests in a handwritten JavaScript implementation, this has the potential to speed up the code by roughly a factor of 2-3, at the cost of a more complex implementation.

Limitations

  • The transformation works on the AST level, so we don't support other decorators (for example, we cannot use functools.cache in the above Fibonacci example).

  • The function can only access variables that are passed in the locals= argument. As a consequence of this, to resolve recursive function calls, we maintain a global mapping of all fiber functions by name. This means that fibers must have distinct names.

  • We don't support some special forms (ternaries, comprehensions). These can easily be added as a rewrite transformation.

  • We don't support exceptions. This would require us to keep track of exception handlers in the trampoline and insert returns to the trampoline to register and deregister handlers.

  • We don't support generators. To add support, we would have to modify the trampoline to accept another operation type (yield) that sends a value to the function that called next(). Also, the trampoline would have to support multiple call stacks.

Possible improvements

  • Improve test coverage on some of the AST transformations.
    • remove_trivial_temporaries may have a bug if the variable that it is replaced with is reassigned to another value.
  • Support more special forms (comprehensions, generators).
  • Support exceptions.
  • Support recursive calls that don't read the return value.

Questions

Why didn't you use Python generators?

It's less interesting as the transformations are easier. Here, we are effectively implementing generators in userspace (i.e. not needing VM support); see the answer to the next question for why this is useful.

Also, people have used generators to do this; see one recent generator example.

Why did you write this?

  • A+ project for CS 61A at Berkeley. During the course, we created a Scheme interpreter. The extra credit question we to replace tail calls in Python with a return to a trampoline, with the goal that tail call optimization in Python would let us evaluate tail calls to arbitrary depth in Scheme, in constant space.

    The test cases for the question checked whether interpreting tail-call recursive functions in Scheme caused a Python stack overflow. Using this Fiber implementation, (1) without tail call optimization in our trampoline, we would still be able to pass the test cases (we just wouldn't use constant space) and (2) we can now evaluate any Scheme expression to arbitrary depth, even if they are not in tail form.

  • The React framework has an a bug open which explores a compiler transform to rewrite JavaScript generators to a state machine so that recursive operations (render, reconcilation) can be written more easily. This is necessary because some JavaScript engines still don't support generators.

    This project basically implements a rough version of that compiler transform as a proof of concept, just in Python. https://github.com/facebook/react/pull/18942

Contributing

See CONTRIBUTING.md for more details.

License

Apache 2.0; see LICENSE for more details.

Disclaimer

This is a personal project, not an official Google project. It is not supported by Google and Google specifically disclaims all warranties as to its quality, merchantability, or fitness for a particular purpose.

Owner
Tyler Hou
Tyler Hou
A simple assembly- and brainfuck-inspired stack-based language

asm-stackfuck A simple assembly- and brainfuck-inspired stack-based language. The language has a few goals: Be stack-based Look like assembly Have a s

Nils Trinity 1 Feb 06, 2022
Islam - This is a simple python script.In this script I have written all the suras of Al Quran. As a result, by using this script, you can know the number of any sura at the moment.

Introduction: If you want to know sura number of al quran by just typing the name of sura than you can use this script. Usage in termux: $ pkg install

Fazle Rabbi 1 Jan 02, 2022
A tool to nowcast quarterly data with monthly indicators: US consumption example

MIDAS_Nowcaster A tool to nowcast quarterly data with monthly indicators: US consumption example Pulls data directly from FRED from a list of codes -

Gene Kindberg-Hanlon 3 Oct 06, 2022
Shai-Hulud - A qtile configuration for the (spice) masses

Shai-Hulud - A qtile configuration for the (spice) masses Installation Notes These dotfiles are set up to use GNU stow for installation. To install, f

16 Dec 30, 2022
A cookiecutter to start a Python package with flawless practices and a magical workflow 🧙🏼‍♂️

PyPackage Cookiecutter This repository is a cookiecutter to quickly start a Python package. It contains a ton of very useful features 🐳 : Package man

Daniel Leal 16 Dec 13, 2021
A wrapper for the apt package manager.

A wrapper for the apt package manager.

531 Jan 04, 2023
Sacred is a tool to help you configure, organize, log and reproduce experiments developed at IDSIA.

Sacred Every experiment is sacred Every experiment is great If an experiment is wasted God gets quite irate Sacred is a tool to help you configure, or

IDSIA 4k Jan 02, 2023
Python script for converting obsidian md-file to html (recursively adds all link/images)

ObsidianToHtmlConverter I made a small python script for converting obsidian md-file to static (local) html (recursively adds all link/images) I made

47 Jan 03, 2023
Return-Parity-MDP - Towards Return Parity in Markov Decision Processes

Towards Return Parity in Markov Decision Processes Code for the AISTATS 2022 pap

Jianfeng Chi 3 Nov 27, 2022
Ningyu Jia(nj2459)/Mengyin Ma(mm5937) Call Analysis group project(Group 36)

Group and Section Group 36 Section 001 name and UNI Name UNI Ningyu Jia nj2459 Mengyin Ma mm5937 code explanation Parking.py (1) Calculate the rate of

1 Dec 04, 2021
A simply dashboard to view commodities position data based on CFTC reports

commodities-dashboard A simply dashboard to view commodities position data based on CFTC reports This is a python project using Dash and plotly to con

71 Dec 19, 2022
A basic ticketing software.

Ticketer A basic ticketing software. Screenshots Program Launched Issuing Ticket Show your Ticket Entry Done Program Exited Code Features to implement

Samyak Jain 2 Feb 10, 2022
Tucan Discord Token Generator - Remastered

TucanGEN-SRC Tucan Discord Token Generator - Remastered Tucan source made better by me. -- idk if it works anymore Includes: hCaptcha Bypass Automatic

Vast 8 Nov 04, 2022
🗽 Like yarn outdated/upgrade, but for pip. Upgrade all your pip packages and automate your Python Dependency Management.

pipupgrade The missing command for pip Table of Contents Features Quick Start Usage Basic Usage Docker Environment Variables FAQ License Features Upda

Achilles Rasquinha 529 Dec 31, 2022
RestMapper takes the pain out of integrating with RESTful APIs.

python-restmapper RestMapper takes the pain out of integrating with RESTful APIs. It removes all of the complexity with writing API-specific code, and

Lionheart Software 8 Oct 31, 2020
This is sample project needed for security course to connect web service to database

secufaku This is sample project needed for security course to "connect web service to database". Why it suits alignment purpose It connects to postgre

Mark Nicholson 6 May 15, 2022
A modern Python build backend

trampolim A modern Python build backend. Features Task system, allowing to run arbitrary Python code during the build process (Planned) Easy to use CL

Filipe Laíns 39 Nov 08, 2022
Basit bir cc generator'ü.

Basit bir cc generator'ü. Setup What To Do; Python Installation We install python from CLICK Generator Board After installing the file and python, we

Lâving 7 Jan 09, 2022
Block when attacker want to bypass the limit of request

Block when attacker want to bypass the limit of request

iFanpS 1 Dec 01, 2021
A python script to search for k-uniform Euclidean tilings.

k-uniform-solver A python script to search for k-uniform Euclidean tilings. This project's aim is to replicate and extend the list of k-uniform Euclid

3 Dec 06, 2022