Pixie - A full-featured 2D graphics library for Python

Overview

Pixie - A full-featured 2D graphics library for Python

Pixie is a 2D graphics library similar to Cairo and Skia.

Github Actions

pip install pixie-python

Features:

  • Typesetting and rasterizing text, including styled rich text via spans.
  • Drawing paths, shapes and curves with even-odd and non-zero windings.
  • Pixel-perfect AA quality.
  • Supported file formats are PNG, BMP, JPG, SVG + more in development.
  • Strokes with joins and caps.
  • Shadows, glows and blurs.
  • Complex masking: Subtract, Intersect, Exclude.
  • Complex blends: Darken, Multiply, Color Dodge, Hue, Luminosity... etc.
  • Many operations are SIMD accelerated.

Image file formats

Format Read Write
PNG
JPEG
BMP
GIF
SVG

Font file formats

Format Read
TTF
OTF
SVG

Joins and caps

Supported Caps:

  • Butt
  • Round
  • Square

Supported Joins:

  • Miter (with miter angle limit)
  • Bevel
  • Round

Blending & masking

Supported Blend Modes:

  • Normal
  • Darken
  • Multiply
  • ColorBurn
  • Lighten
  • Screen
  • Color Dodge
  • Overlay
  • Soft Light
  • Hard Light
  • Difference
  • Exclusion
  • Hue
  • Saturation
  • Color
  • Luminosity

Supported Mask Modes:

  • Mask
  • Overwrite
  • Subtract Mask
  • Intersect Mask
  • Exclude Mask

SVG style paths:

Format Supported Description
M m move to
L l line to
h h horizontal line to
V v vertical line to
C c S s cublic to
Q q T t quadratic to
A a arc to
z close path

Testing

pytest

Examples

git clone https://github.com/treeform/pixie-python to run examples.

Text

python examples/text.py

font = pixie.read_font("examples/data/Roboto-Regular_1.ttf")
font.size = 20

text = "Typesetting is the arrangement and composition of text in graphic design and publishing in both digital and traditional medias."

image.fill_text(
    font,
    text,
    bounds = pixie.Vector2(180, 180),
    transform = pixie.translate(10, 10)
)

example output

Text spans

python examples/text_spans.py

typeface = pixie.read_typeface("examples/data/Ubuntu-Regular_1.ttf")

def make_font(typeface, size, color):
    font = typeface.new_font()
    font.size = size
    font.paints[0].color = color
    return font

spans = pixie.SeqSpan()
spans.append(pixie.Span(
    "verb [with object] ",
    make_font(typeface, 12, pixie.Color(0.78125, 0.78125, 0.78125, 1))
))
spans.append(pixie.Span(
    "strallow\n",
    make_font(typeface, 36, pixie.Color(0, 0, 0, 1))
))
spans.append(pixie.Span(
    "\nstral·low\n",
    make_font(typeface, 13, pixie.Color(0, 0.5, 0.953125, 1))
))
spans.append(pixie.Span(
    "\n1. free (something) from restrictive restrictions \"the regulations are intended to strallow changes in public policy\" ",
    make_font(typeface, 14, pixie.Color(0.3125, 0.3125, 0.3125, 1))
))

image.arrangement_fill_text(
    spans.typeset(bounds = pixie.Vector2(180, 180)),
    transform = pixie.translate(10, 10)
)

example output

Square

python examples/square.py

paint = pixie.Paint(pixie.PK_SOLID)
paint.color = pixie.Color(1, 0, 0, 1)

ctx = image.new_context()
ctx.fill_style = paint

ctx.fill_rect(50, 50, 100, 100)

example output

Line

python examples/line.py

paint = pixie.Paint(pixie.PK_SOLID)
paint.color = pixie.parse_color("#FF5C00")

ctx = image.new_context()
ctx.stroke_style = paint
ctx.line_width = 10

ctx.stroke_segment(25, 25, 175, 175)

example output

Rounded rectangle

python examples/rounded_rectangle.py

paint = pixie.Paint(pixie.PK_SOLID)
paint.color = pixie.Color(0, 1, 0, 1)

ctx = image.new_context()
ctx.fill_style = paint
ctx.rounded_rect(50, 50, 100, 100, 25, 25, 25, 25)
ctx.fill()

example output

Heart

python examples/heart.py

path = pixie.parse_path(
    """
    M 20 60
    A 40 40 90 0 1 100 60
    A 40 40 90 0 1 180 60
    Q 180 120 100 180
    Q 20 120 20 60
    z
    """
)

paint = pixie.Paint(pixie.PK_SOLID)
paint.color = pixie.parse_color("#FC427B")

image.fill_path(path, paint)

example output

Masking

python examples/masking.py

lines = pixie.Image(200, 200)
lines.fill(pixie.parse_color("#FC427B"))

paint = pixie.Paint(pixie.PK_SOLID)
paint.color = pixie.parse_color("#F8D1DD")

ctx = lines.new_context()
ctx.stroke_style = paint
ctx.line_width = 30

ctx.stroke_segment(25, 25, 175, 175)
ctx.stroke_segment(25, 175, 175, 25)

path = pixie.parse_path(
    """
    M 20 60
    A 40 40 90 0 1 100 60
    A 40 40 90 0 1 180 60
    Q 180 120 100 180
    Q 20 120 20 60
    z
    """
)

mask = pixie.Mask(200, 200)
mask.fill_path(path)

lines.mask_draw(mask)
image.draw(lines)

example output

Gradient

python examples/gradient.py

paint = pixie.Paint(pixie.PK_GRADIENT_RADIAL)

paint.gradient_handle_positions.append(pixie.Vector2(100, 100))
paint.gradient_handle_positions.append(pixie.Vector2(200, 100))
paint.gradient_handle_positions.append(pixie.Vector2(100, 200))

paint.gradient_stops.append(pixie.ColorStop(pixie.Color(1, 0, 0, 1), 0))
paint.gradient_stops.append(pixie.ColorStop(pixie.Color(1, 0, 0, 0.15625), 1))

path = pixie.parse_path(
    """
    M 20 60
    A 40 40 90 0 1 100 60
    A 40 40 90 0 1 180 60
    Q 180 120 100 180
    Q 20 120 20 60
    z
    """
)

image.fill_path(path, paint)

example output

Image tiled

python examples/image_tiled.py

path = pixie.Path()
path.polygon(100, 100, 70, 8)

paint = pixie.Paint(pixie.PK_IMAGE_TILED)
paint.image = pixie.read_image("examples/data/baboon.png")
paint.image_mat = pixie.scale(0.08, 0.08)

image.fill_path(path, paint)

example output

Shadow

python examples/shadow.py

path = pixie.Path()
path.polygon(100, 100, 70, sides = 8)

paint = pixie.Paint(pixie.PK_SOLID)
paint.color = pixie.Color(1, 1, 1, 1)

polygon_image = pixie.Image(200, 200)
polygon_image.fill_path(path, paint)

shadow = polygon_image.shadow(
    offset = pixie.Vector2(2, 2),
    spread = 2,
    blur = 10,
    color = pixie.Color(0, 0, 0, 0.78125)
)

image.draw(shadow)
image.draw(polygon_image)

example output

Blur

python examples/blur.py

trees = pixie.read_image("examples/data/trees.png")

path = pixie.Path()
path.polygon(100, 100, 70, 6)

mask = pixie.Mask(200, 200)
mask.fill_path(path)

blur = trees.copy()
blur.blur(20)
blur.mask_draw(mask)

image.draw(trees)
image.draw(blur)

example output

Tiger

python examples/tiger.py

tiger = pixie.read_image("examples/data/tiger.svg")

image.draw(
    tiger,
    pixie.translate(100, 100) *
    pixie.scale(0.2, 0.2) *
    pixie.translate(-450, -450)
)

example output

Comments
  • Having some trouble with vertical alignment

    Having some trouble with vertical alignment

    I'm trying to have some text with two lines, aligned to the bottom of some bounds, and with a small line-height so that the two lines are closer together. However the text is not going where I would expect. It looks like it's going too downwards. When aligned to bottom it even goes outside the bounds. If I leave the line-height to default it also doesn't look right. Am I missing something?

    Here's an example and it's output:

    import pixie
    
    image = pixie.Image(800, 800)
    image.fill(pixie.Color(1, 1, 1, 1))
    
    paint = pixie.Paint(pixie.PK_SOLID)
    paint.color = pixie.Color(1, 0, 0, 1)
    ctx = image.new_context()
    ctx.line_width = 1
    ctx.stroke_style = paint
    ctx.stroke_rect(0, 266, 800, 318)
    
    text = "AbCd\naBcD"
    
    font = pixie.read_font("./Inter-Bold.otf")
    font.size = 182
    font.line_height = 140
    
    font.paint.color = pixie.Color(1, 0, 0, 1)
    image.fill_text(
        font,
        text,
        bounds = pixie.Vector2(800, 318),
        h_align = pixie.HA_CENTER,
        v_align = pixie.VA_TOP,
        transform = pixie.translate(0, 266)
    )
    
    font.paint.color = pixie.Color(0, 1, 0, 1)
    image.fill_text(
        font,
        text,
        bounds = pixie.Vector2(800, 318),
        h_align = pixie.HA_CENTER,
        v_align = pixie.VA_MIDDLE,
        transform = pixie.translate(0, 266)
    )
    
    font.paint.color = pixie.Color(0, 0, 1, 1)
    image.fill_text(
        font,
        text,
        bounds = pixie.Vector2(800, 318),
        h_align = pixie.HA_CENTER,
        v_align = pixie.VA_BOTTOM,
        transform = pixie.translate(0, 266)
    )
    
    image.write_file("out.png")
    

    result

    opened by EnricoMonese 4
  • Unable to load jpg on Linux

    Unable to load jpg on Linux

    Installed pixie-python via pip, however when I try to load a JPG I get the following exception.

    Exception has occurred: PixieError
    Decoding JPG requires -d:pixieUseStb
    

    I guess pixie is using std image library under the hood and the package did not get compiled with the correct options to support this?

    opened by EdMUK 3
  • genny supporting dart ffi

    genny supporting dart ffi

    Hi treeform, very nice lib (looking at the python output), I have recently discovered Flutter over dart language, they create a nice vibrant UI experience. BUT:

    its ffi lib is just so ugly, shudders! it's ffi interop is very verbose and looks annoying to get done, at the same time, devs seem to flock to this (relatively) new platform but not many want to get hands dirty in C code, so Nim to the rescue right?

    Can genny also support the dart programming language? it's just generating a lot of ugly boilerplate code.

    I think it's a chance to get more people to use Nim, and thereby building more libs and contributing to it, which was one of your purposes with genny.

    Aside from that, I personally want to leverage Nim libraries that i and others have written, and use dart and flutter mainly for the GUI story (though in terms of features, dart looks to be a decent language. unfortunately for dart, in terms of syntax - verbose like java and I think no templates, but this is just first impressions.)

    opened by kobi2187 2
  • support encodeImage method

    support encodeImage method

    I see there is an encodeImage proc in the nim library, would it be possible to support that as well as the already existing write_file() in the python layer?

    https://nimdocs.com/treeform/pixie/pixie.html#encodeImage%2CImage%2CFileFormat

    opened by RobBrazier 2
  • OSError: /lib/x86_64-linux-gnu/libm.so.6: version `GLIBC_2.29' not found on Google Colab

    OSError: /lib/x86_64-linux-gnu/libm.so.6: version `GLIBC_2.29' not found on Google Colab

    import pixie gives error:

    ---------------------------------------------------------------------------
    
    OSError                                   Traceback (most recent call last)
    
    <ipython-input-14-4833f4429f21> in <module>()
    ----> 1 import pixie
          2 
          3 
    
    3 frames
    
    /usr/lib/python3.7/ctypes/__init__.py in __init__(self, name, mode, handle, use_errno, use_last_error)
        362 
        363         if handle is None:
    --> 364             self._handle = _dlopen(self._name, mode)
        365         else:
        366             self._handle = handle
    
    OSError: /lib/x86_64-linux-gnu/libm.so.6: version `GLIBC_2.29' not found (required by /usr/local/lib/python3.7/dist-packages/pixie/libpixie.so)
    

    https://i.imgur.com/N1ue3Ce.png

    opened by arye321 2
  • module 'pixie' has no attribute 'PK_SOLID'

    module 'pixie' has no attribute 'PK_SOLID'

    This is the source code:

    import pixie
    
    image = pixie.Image(200, 200)
    image.fill(pixie.Color(1, 1, 1, 1))
    
    paint = pixie.Paint(pixie.PK_SOLID)
    paint.color = pixie.Color(1, 0, 0, 1)
    
    ctx = image.new_context()
    ctx.fill_style = paint
    
    ctx.fill_rect(50, 50, 100, 100)
    
    image.write_file("examples/square.png")
    

    I got the following results: Traceback (most recent call last): File "F:\Python\Python Project\Test\test.py", line 6, in paint = pixie.Paint(pixie.PK_SOLID) AttributeError: module 'pixie' has no attribute 'PK_SOLID'

    opened by ZaneHuangPro 1
  • Request: Text h_align = pixie.JUSTIFY_ALIGN

    Request: Text h_align = pixie.JUSTIFY_ALIGN

    Would be nice if add this alignment style, also give access to Arrangement attributes(selectionRects, lines, positions).

    I've made this little library for making this feature for me, it behaves like the Microsoft Word Office.

    import
        nimpy,
        pixie,
        unicode
    
    pyExportModule("pixie_utils")
    
    const
        LF = Rune(10)
        NR = Rune(0)
    
    proc justifyArrangement*(arrangement: Arrangement, maxWidth: float32) {.raises: [].} =
        proc right(rect: Rect): float32 =
            rect.x + rect.w
    
        let
            runes: ptr = arrangement.runes.addr
            positions: ptr = arrangement.positions.addr
            rects: ptr = arrangement.selectionRects.addr
            last_lineId: int = arrangement.lines.len-1
        var
            rune, last_rune: Rune
            last_wordRuneId: int
            spaces_idx: seq[int]
            inc_width, space_width, line_width, x_offset: float32
        
        for lineId, (start, stop) in arrangement.lines:
            last_rune = runes[stop]
    
            # This line must not be justified, if it is the last or if the last rune is a breakline char.
            if lineId == last_lineId or last_rune.uint32 == LF.uint32:
                continue
    
            echo runes[start..stop]
            # Get the spaces indexes of this line to increase their width, and get the line width.
            spaces_idx = @[]
            last_rune = NR
            for r_id in start..stop:
                rune = runes[r_id]
                if not rune.isWhiteSpace():
                    if last_rune.isWhiteSpace():
                        spaces_idx.add(r_id-1)
                    last_wordRuneId = r_id
                last_rune = runes[r_id]
    
            line_width = rects[last_wordRuneId].right
    
            echo "Line spaces: ", spaces_idx.len
            if spaces_idx.len > 0:
                # Get the amount of pixels/units to increase each space width in the middle of the line.
                inc_width = (maxWidth - line_width) / spaces_idx.len.float32
    
                if inc_width > 0:
                    space_width = rects[spaces_idx[0]].w + inc_width
    
                    # Adjust the runes X position
                    x_offset = 0
                    for r_id in spaces_idx[0]..stop:
                        positions[r_id].x += x_offset
    
                        if r_id in spaces_idx:
                            rects[r_id].x += x_offset
                            rects[r_id].w = space_width
                            x_offset += inc_width
                        else:
                            rects[r_id].x += x_offset
    
    proc justifyArrangement(arrangement_ref: int, maxWidth: float32) {.exportpy: "justifyArrangement".} =
        justifyArrangement(cast[Arrangement](arrangement_ref), maxWidth)
    
    opened by IagoBeuller 0
  • Request: image.to_bytes() function

    Request: image.to_bytes() function

    I need the bytes of the images, for example, use them in pillow or pygame.

    I've made this little library for making this feature for me, it gets the image data bytes as well the png file bytes.

    import
        nimpy,
        pixie
    
    pyExportModule("pixie_utils")
    
    proc getImageBytes*(image: Image, format: string = "png"): string {.raises: [PixieError].} =
      # Gets the bytes from image.
      let encodeFormat = case format:
        of "png": PngFormat
        of "bmp": BmpFormat
        of "jpg", "jpeg": JpegFormat
        of "qoi": QoiFormat
        of "ppm": PpmFormat
        else:
          raise newException(PixieError, "Unsupported image format")
    
      result = image.encodeImage(encodeFormat)
    
    proc getImageData*(image: Image): string {.raises: [].} =
      # Gets the image data as bytes.
      result = newString(image.width * image.height * 4)
      var
        i = 0
        rgba: ColorRGBA
      
      for color in image.data:
        rgba = color.rgba()
        result[i] = rgba.r.char
        result[i+1] = rgba.g.char
        result[i+2] = rgba.b.char
        result[i+3] = rgba.a.char
        i += 4
    
    proc getImageBytes(image_ref: int, format: string = "png"): string {.exportpy: "getImageBytes".} =
        result = getImageBytes(cast[Image](image_ref), format)
    
    proc getImageData(image_ref: int): string {.exportpy: "getImageData".} =
        result = getImageData(cast[Image](image_ref))
    
    opened by IagoBeuller 0
  • Can I do Image Mosaic Using this library?

    Can I do Image Mosaic Using this library?

    Hi,

    If I have known the related offset of translation and angle in pixels between centers of 2 images, can I use this library to generate a mosaic without explicitly considering allocating a big matrix matching to final image size, compensating for non-integer offset values, and converting the offset between image centers to left-up image origin?

    Now, I'm doing these trivial things. It's fragile and troublesome.

    opened by HikariS97 0
Releases(4.3.0)
  • 4.3.0(May 24, 2022)

    What's Changed

    • 4.3.0 by @guzba in https://github.com/treeform/pixie-python/pull/21

    Full Changelog: https://github.com/treeform/pixie-python/compare/4.0.1...4.3.0

    Source code(tar.gz)
    Source code(zip)
  • 4.0.1(Feb 23, 2022)

    What's Changed

    • 4.0.1 by @guzba in https://github.com/treeform/pixie-python/pull/18

    Full Changelog: https://github.com/treeform/pixie-python/compare/3.1.4...4.0.1

    Source code(tar.gz)
    Source code(zip)
  • 3.1.4(Feb 6, 2022)

    What's Changed

    • pixie 3.1.4 by @guzba in https://github.com/treeform/pixie-python/pull/16

    Full Changelog: https://github.com/treeform/pixie-python/compare/3.0.2...3.1.4

    Source code(tar.gz)
    Source code(zip)
  • 3.0.2(Oct 28, 2021)

    What's Changed

    • font.paint by @guzba in https://github.com/treeform/pixie-python/pull/14

    Full Changelog: https://github.com/treeform/pixie-python/compare/0.1.4...3.0.2

    Source code(tar.gz)
    Source code(zip)
Owner
treeform
I like the Nim programming language.
treeform
OpenCV-Erlang/Elixir bindings

evision [WIP] : OS : arch Build Status Ubuntu 20.04 arm64 Ubuntu 20.04 armv7 Ubuntu 20.04 s390x Ubuntu 20.04 ppc64le Ubuntu 20.04 x86_64 macOS 11 Big

Cocoa 194 Jan 05, 2023
Generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv

basic-dataset-generator-from-image-of-numbers generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv inpu

1 Jan 01, 2022
Go package for OCR (Optical Character Recognition), by using Tesseract C++ library

gosseract OCR Golang OCR package, by using Tesseract C++ library. OCR Server Do you just want OCR server, or see the working example of this package?

Hiromu OCHIAI 1.9k Dec 28, 2022
Camelot: PDF Table Extraction for Humans

Camelot: PDF Table Extraction for Humans Camelot is a Python library that makes it easy for anyone to extract tables from PDF files! Note: You can als

Atlan Technologies Pvt Ltd 3.3k Dec 31, 2022
Textboxes_plusplus implementation with Tensorflow (python)

TextBoxes++-TensorFlow TextBoxes++ re-implementation using tensorflow. This project is greatly inspired by slim project And many functions are modifie

81 Dec 07, 2022
Source code of RRPN ---- Arbitrary-Oriented Scene Text Detection via Rotation Proposals

Paper source Arbitrary-Oriented Scene Text Detection via Rotation Proposals https://arxiv.org/abs/1703.01086 News We update RRPN in pytorch 1.0! View

428 Nov 22, 2022
list all open dataset about ocr.

ocr-open-dataset list all open dataset about ocr. printed dataset year Born-Digital Images (Web and Email) 2011-2015 COCO-Text 2017 Text Extraction fr

hongbomin 95 Nov 24, 2022
MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI.

MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with one

Project MONAI 344 Dec 23, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
Bu uygulamada Python ve Opencv kullanarak bilgisayar kamerasından yüz tespiti yapıyoruz.

opencv_yuz_bulma Bu uygulamada Python ve Opencv kullanarak bilgisayar kamerasından yüz tespiti yapıyoruz. Bilgisarın kendi kamerasını kullanmak için;

Ahmet Haydar Ornek 6 Apr 16, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
TextField: Learning A Deep Direction Field for Irregular Scene Text Detection (TIP 2019)

TextField: Learning A Deep Direction Field for Irregular Scene Text Detection Introduction The code and trained models of: TextField: Learning A Deep

Yukang Wang 101 Dec 12, 2022
This repository provides train&test code, dataset, det.&rec. annotation, evaluation script, annotation tool, and ranking.

SCUT-CTW1500 Datasets We have updated annotations for both train and test set. Train: 1000 images [images][annos] Additional point annotation for each

Yuliang Liu 600 Dec 18, 2022
Solution for Problem 1 by team codesquad for AIDL 2020. Uses ML Kit for OCR and OpenCV for image processing

CodeSquad PS1 Solution for Problem Statement 1 for AIDL 2020 conducted by @unifynd technologies. Problem Given images of bills/invoices, the task was

Burhanuddin Udaipurwala 111 Nov 27, 2022
A little but useful tool to explore OCR data extracted with `pytesseract` and `opencv`

Screenshot OCR Tool Extracting data from screen time screenshots in iOS and Android. We are exploring 3 options: Simple OCR with no text position usin

Gabriele Marini 1 Dec 07, 2021
This is a pytorch re-implementation of EAST: An Efficient and Accurate Scene Text Detector.

EAST: An Efficient and Accurate Scene Text Detector Description: This version will be updated soon, please pay attention to this work. The motivation

Dejia Song 544 Dec 20, 2022
OCR software for recognition of handwritten text

Handwriting OCR The project tries to create software for recognition of a handwritten text from photos (also for Czech language). It uses computer vis

Břetislav Hájek 562 Jan 03, 2023
Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation, CVPR 2020 (Oral)

SEAM The implementation of Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentaion. You can also download the repos

Hibercraft 459 Dec 26, 2022
Course material for the Multi-agents and computer graphics course

TC2008B Course material for the Multi-agents and computer graphics course. Setup instructions Strongly recommend using a custom conda environment. Ins

16 Dec 13, 2022