This repository hosts the code for Stanford Pupper and Stanford Woofer, Raspberry Pi-based quadruped robots that can trot, walk, and jump.

Overview

Stanford Quadruped

Overview

This repository hosts the code for Stanford Pupper and Stanford Woofer, Raspberry Pi-based quadruped robots that can trot, walk, and jump.

Pupper CC Max Morse

Video of pupper in action: https://youtu.be/NIjodHA78UE

Project page: https://stanfordstudentrobotics.org/pupper

Documentation & build guide: https://pupper.readthedocs.io/en/latest/

How it works

Overview diagram The main program is run_robot.py which is located in this directory. The robot code is run as a loop, with a joystick interface, a controller, and a hardware interface orchestrating the behavior.

The joystick interface is responsible for reading joystick inputs from a UDP socket and converting them into a generic robot command type. A separate program, joystick.py, publishes these UDP messages, and is responsible for reading inputs from the PS4 controller over bluetooth. The controller does the bulk of the work, switching between states (trot, walk, rest, etc) and generating servo position targets. A detailed model of the controller is shown below. The third component of the code, the hardware interface, converts the position targets from the controller into PWM duty cycles, which it then passes to a Python binding to pigpiod, which then generates PWM signals in software and sends these signals to the motors attached to the Raspberry Pi. Controller diagram This diagram shows a breakdown of the robot controller. Inside, you can see four primary components: a gait scheduler (also called gait controller), a stance controller, a swing controller, and an inverse kinematics model.

The gait scheduler is responsible for planning which feet should be on the ground (stance) and which should be moving forward to the next step (swing) at any given time. In a trot for example, the diagonal pairs of legs move in sync and take turns between stance and swing. As shown in the diagram, the gait scheduler can be thought of as a conductor for each leg, switching it between stance and swing as time progresses.

The stance controller controls the feet on the ground, and is actually quite simple. It looks at the desired robot velocity, and then generates a body-relative target velocity for these stance feet that is in the opposite direction as the desired velocity. It also incorporates turning, in which case it rotates the feet relative to the body in the opposite direction as the desired body rotation.

The swing controller picks up the feet that just finished their stance phase, and brings them to their next touchdown location. The touchdown locations are selected so that the foot moves the same distance forward in swing as it does backwards in stance. For example, if in stance phase the feet move backwards at -0.4m/s (to achieve a body velocity of +0.4m/s) and the stance phase is 0.5 seconds long, then we know the feet will have moved backwards -0.20m. The swing controller will then move the feet forwards 0.20m to put the foot back in its starting place. You can imagine that if the swing controller only put the leg forward 0.15m, then every step the foot would lag more and more behind the body by -0.05m.

Both the stance and swing controllers generate target positions for the feet in cartesian coordinates relative the body center of mass. It's convenient to work in cartesian coordinates for the stance and swing planning, but we now need to convert them to motor angles. This is done by using an inverse kinematics model, which maps between cartesian body coordinates and motor angles. These motor angles, also called joint angles, are then populated into the state variable and returned by the model.

How to Build Pupper

Main documentation: https://pupper.readthedocs.io/en/latest/

You can find the bill of materials, pre-made kit purchasing options, assembly instructions, software installation, etc at this website.

Help

Owner
Stanford Student Robotics
Stanford Student Robotics
Zev es un Bot/Juego RPG de Discord creado en y para aprender Python.

Zev es un Bot/Juego RPG de Discord creado en y para aprender Python.

Julen Smith 3 Jan 12, 2022
Drobo Status is a python program that will connect to your Drobo and return JSON data regarding your Drobo

This is a simple python script that will run a docker container to pull data from Drobo. It will give information like (Name, serial, firmware, disk-total, disk-used, disk-free and individual disk st

Biofects 1 Jan 15, 2022
A simple small scale electric car was build which can be driven by remote control and features a fully autonomous parking procedure.

personal-autonomous-parking-car-raspberry A simple electric car model was build using Raspbery pi. The car has remote control and autonomous operation

Kostas Ziovas 2 Jan 26, 2022
Universal Xiaomi MIoT integration for Home Assistant

Xiaomi MIoT Raw 简体中文 | English MIoT 协议是小米智能家居从 2018 年起推行的智能设备通信协议规范,此后凡是可接入米家的设备均通过此协议进行通信。此插件按照 MIoT 协议规范与设备通信,实现对设备的状态读取及控制。

1.9k Jan 02, 2023
Volkswagen ID component for Home Assistant

Volkswagen ID component for Home Assistant This folder contains both a generic Python 3 library for the Volkswagen ID API and a component for Home Ass

55 Jan 07, 2023
Point Density-Aware Voxels for LiDAR 3D Object Detection (CVPR 2022)

PDV PDV is LiDAR 3D object detection method. This repository is based off [OpenPCDet]. Point Density-Aware Voxels for LiDAR 3D Object Detection Jordan

Toronto Robotics and AI Laboratory 114 Dec 21, 2022
Raspberry Pi Pico Escape Room game.

Pico Escape Room Raspberry Pi Pico Escape Room game. Parts Raspberry Pi Pico Set of 2 x 20-pin Headers for Raspberry Pi Pico 4PCS Breadboards Kit Incl

Kevin Thomas 5 Feb 02, 2022
Raspberry Pi Pico as a Rubber Ducky

Raspberry-Pi-Pico-as-a-Rubber-Ducky Kurulum Raspberry Pi Pico cihazınız için CircuitPython'u indirin. Boot düğmesine basılı tutarken cihazı bir USB ba

Furkan Enes POLATOĞLU 6 Dec 13, 2022
Event-based hardware simulation framework

An event-based multi-device simulation framework providing configuration and orchestration of complex multi-device simulations.

Diamond Light Source Controls Group 3 Feb 01, 2022
Watson-Assistant with integration capabilities

Watson-Assistant-Integration Watson-Assistant with integration capabilities "main.py" should be deployed as Cloud Function (Action) on IBM Cloud. For

Sergey Usachev 1 Dec 20, 2021
Aqara Camera G3 integration for Home Assistant

Aqara Camera G3 integration for Home Assistant ATTENTION: The component only works after enabled telnet. Only supportd stream. Not support still image

14 Dec 18, 2022
Fener ROS2 package version 2

Fener's ROS2 codes that runs on the vehicle. This node contains basic sensing and actuation nodes for vehicle control. Also example applications will be added.

Muhammed Sezer 1 Jan 18, 2022
Brogrammer-keyboard - FIrmware for the Brogrammer Keyboard v1.0

Brogrammer Keyboard Firmware The package contains the firmware that runs on the Brogrammer Keyboard v1.0 See https://imgur.com/a/oY5QZ14 This keyboard

Devin Hartleben 1 Apr 21, 2022
Water quality integration for Home Assistant with data provided by Budapest FVM

Water Quality FVM (Budapest, HU) custom integration for Home Assistant This custom component integrates water quality information provided by Budapest

Atticus Maximus 3 Dec 23, 2021
Estimation of whether or not the persons given information will have diabetes.

Diabetes Business Problem : It is desired to develop a machine learning model that can predict whether people have diabetes when their characteristics

Barış TOKATLIOĞLU 0 Jan 20, 2022
Designed a system that can efficiently sort recyclables and transfer them to corresponding bins using Python, a Raspberry Pi, and Quanser Labs.

System for Sorting and Recycling Containers - Project 3 Table of contents Overview The challenge Screenshot My process Built with Code snippets What I

Mit Patel 2 Dec 02, 2022
Raspberry Pi Spectrometer

PySpectrometer 2021-03-05 Raspberry Pi Spectrometer The PySpectrometer is a Python (OpenCV and Tkinter) implementation of an optical spectrometer. The

Les Wright 538 Jan 05, 2023
A DUCO (Duino-Coin) miner for GigaDevice ARM boards.

GD32 Duino-Coin Miner Description Contains the firmware and miner software for mining DUCO (Duino-Coin) on GigaDevice GD32 chips. Supported boards GD3

Maximilian Gerhardt 2 Feb 20, 2022
智能无人机路径规划仿真系统是一个具有操作控制精细、平台整合性强、全方向模型建立与应用自动化特点的软件

Drone智能无人机路径规划仿真系统是一个具有操作控制精细、平台整合性强、全方向模型建立与应用自动化特点的软件。它以A、B两国在C区开展无人机战争为背景,该系统的核心功能是通过仿真平台规划无人机航线,并进行验证输出,数据可导入真实无人机,使其按照规定路线精准抵达战场任一位置,支持多人多设备编队联合行动。

wwy 349 Jan 03, 2023
Projet d'integration SRI 3A ROS

projet-integration-sri-2021-2022 Projet d'intégration ROS SRI 2021 2022 Organization: Planification de tâches Perception Saisie: Cédérick Mouliets Sim

AIP Primeca Occitanie 3 Jan 07, 2022