Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Related tags

Deep Learninghydra
Overview

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Paper

Overview

Hydra is a state-of-the-art fuzzing framework for file systems. It provides building blocks for file system fuzzing, including multi-dimensional input mutators, feedback engines, a libOS-based executor, and a bug reproducer with test case minimizer. Developers only need to focus on writing (or bringing in) a checker which defines the core logic for finding the types of bugs of their own interests. Along with the framework, this repository includes our in-house developed crash consistency checker (SymC3), with which 11 new crash consistency bugs were revealed from ext4, Btrfs, F2FS, and from two verified file systems: FSCQ and Yxv6.

Contents

  • General code base

    • src/combined: Hydra input mutator
    • src/lkl/tools/lkl/{FS}-combined-consistency: Hydra LibOS-based Executor (will be downloaded and compiled during setup)
  • Checkers

    • src/emulator: Hydra's in-house crash consistency checker, SymC3

Setup

1. All setup should be done under src

$ cd src

2. Install dependencies

./dep.sh

3. Compile for each file system

$ make build-btrfs-imgwrp
  • We can do the same for other file systems:
$ make build-ext4-imgwrp
$ make build-f2fs-imgwrp
$ make build-xfs-imgwrp
  • (Skip if you want to test the latest kernel) To reproduce bugs presented in the SOSP'19 paper, do the following to back-port LKL to kernel 4.16.
$ cd lkl (pwd: proj_root/src/lkl) # assuming that you are in the src directory
$ make mrproper
$ git pull
$ git checkout v4.16-backport
$ ./compile -t btrfs
$ cd .. (pwd: proj_root/src)

4. Set up environments

$ sudo ./prepare_fuzzing.sh
$ ./prepare_env.sh

5. Run fuzzing (single / multiple instance)

  • Single instance
$ ./run.py -t [fstype] -c [cpu_id] -l [tmpfs_id] -g [fuzz_group]

-t: choose from btrfs, f2fs, ext4, xfs
-c: cpu id to run this fuzzer instance
-l: tmpfs id to store logs (choose one from /tmp/mosbench/tmpfs-separate/)
-g: specify group id for parallel fuzzing, default: 0

e.g., ./run.py -t btrfs -c 4 -l 10 -g 1
Runs btrfs fuzzer, and pins the instance to Core #4.
Logs will be accumulated under /tmp/mosbench/tmpfs-separate/10/log/ .
  • You can also run multiple fuzzers in parallel by doing:
[Terminal 1] ./run.py -t btrfs -c 1 -l 10 -g 1
[Terminal 2] ./run.py -t btrfs -c 2 -l 10 -g 1
[Terminal 3] ./run.py -t btrfs -c 3 -l 10 -g 1
[Terminal 4] ./run.py -t btrfs -c 4 -l 10 -g 1
// all btrfs bug logs will be under /tmp/mosbench/tmpfs-separate/10/log/

[Terminal 5] ./run.py -t f2fs -c 5 -l 11 -g 2
[Terminal 6] ./run.py -t f2fs -c 6 -l 11 -g 2
[Terminal 7] ./run.py -t f2fs -c 7 -l 11 -g 2
[Terminal 8] ./run.py -t f2fs -c 8 -l 11 -g 2
// all f2fs bug logs will be under /tmp/mosbench/tmpfs-separate/11/log/

6. Important note

It is highly encouraged that you use separate input, output, log directories for each file system, unless you are running fuzzers in parallel. If you reuse the same directories from previous testings of other file systems, it won't work properly.

7. Experiments

Please refer to EXPERIMENTS.md for detailed experiment information.

Contacts

Owner
gts3.org ([email protected])
https://gts3.org
gts3.org (<a href=[email protected])">
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

PerfFuzz Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how ca

Caroline Lemieux 125 Nov 18, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

MEGVII Research 179 Jan 02, 2023
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
Code for "OctField: Hierarchical Implicit Functions for 3D Modeling (NeurIPS 2021)"

OctField(Jittor): Hierarchical Implicit Functions for 3D Modeling Introduction This repository is code release for OctField: Hierarchical Implicit Fun

55 Dec 08, 2022
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022