Deep reinforcement learning library built on top of Neural Network Libraries

Overview

License Build status

Deep Reinforcement Learning Library built on top of Neural Network Libraries

NNablaRL is a deep reinforcement learning library built on top of Neural Network Libraries that is intended to be used for research, development and production.

Installation

Installing NNablaRL is easy!

$ pip install nnabla-rl

NNablaRL only supports Python version >= 3.6 and NNabla version >= 1.17.

Enabling GPU accelaration (Optional)

NNablaRL algorithms run on CPU by default. To run the algorithm on GPU, first install nnabla-ext-cuda as follows. (Replace [cuda-version] depending on the CUDA version installed on your machine.)

$ pip install nnabla-ext-cuda[cuda-version]
# Example installation. Supposing CUDA 11.0 is installed on your machine.
$ pip install nnabla-ext-cuda110

After installing nnabla-ext-cuda, set the gpu id to run the algorithm on through algorithm's configuration.

import nnabla_rl.algorithms as A

config = A.DQNConfig(gpu_id=0) # Use gpu 0. If negative, will run on CPU.
dqn = A.DQN(env, config=config)
...

Features

Friendly API

NNablaRL has friendly Python APIs which enables to start training with only 3 lines of python code.

import nnabla_rl
import nnabla_rl.algorithms as A
from nnabla_rl.utils.reproductions import build_atari_env

env = build_atari_env("BreakoutNoFrameskip-v4") # 1
dqn = A.DQN(env)  # 2
dqn.train(env)  # 3

To get more details about NNablaRL, see documentation and examples.

Many builtin algorithms

Most of famous/SOTA deep reinforcement learning algorithms, such as DQN, SAC, BCQ, GAIL, etc., are implemented in NNablaRL. Implemented algorithms are carefully tested and evaluated. You can easily start training your agent using these verified implementations.

For the list of implemented algorithms see here.

You can also find the reproduction and evaluation results of each algorithm here.
Note that you may not get completely the same results when running the reproduction code on your computer. The result may slightly change depending on your machine, nnabla/nnabla-rl's package version, etc.

Seemless switching of online and offline training

In reinforcement learning, there are two main training procedures, online and offline, to train the agent. Online training is a training procedure that executes both data collection and network update alternately. Conversely, offline training is a training procedure that updates the network using only existing data. With NNablaRL, you can switch these two training procedures seemlessly. For example, as shown below, you can easily train a robot's controller online using simulated environment and finetune it offline with real robot dataset.

import nnabla_rl
import nnabla_rl.algorithms as A

simulator = get_simulator() # This is just an example. Assuming that simulator exists
dqn = A.DQN(simulator)
# train online for 1M iterations
dqn.train_online(simulator, total_iterations=1000000)

real_data = get_real_robot_data() # This is also an example. Assuming that you have real robot data
# fine tune the agent offline for 10k iterations using real data
dqn.train_offline(real_data, total_iterations=10000)

Getting started

Try below interactive demos to get started.
You can run it directly on Colab from the links in the table below.

Title Notebook Target RL task
Simple reinforcement learning training to get started Open In Colab Pendulum
Learn how to use training algorithms Open In Colab Pendulum
Learn how to use customized network model for training Open In Colab Mountain car
Learn how to use different network solver for training Open In Colab Pendulum
Learn how to use different replay buffer for training Open In Colab Pendulum
Learn how to use your own environment for training Open In Colab Customized environment
Atari game training example Open In Colab Atari games

Documentation

Full documentation is here.

Contribution guide

Any kind of contribution to NNablaRL is welcome! See the contribution guide for details.

License

NNablaRL is provided under the Apache License Version 2.0 license.

Comments
  • Update cem function interface

    Update cem function interface

    Updated interface of cross entropy function methods. The args, pop_size is now changed to sample_size. In addition, the given objective function to CEM function will be called with variable x which has (batch_size, sample_size, x_dim). This is different from previous interface. If you want to know the details, please see the function docs.

    opened by sbsekiguchi 1
  • Add implementation for RNN support and DRQN algorithm

    Add implementation for RNN support and DRQN algorithm

    Add RNN model support and DRQN algorithm.

    Following trainers will support RNN-model.

    • Q value-based trainers
    • Deterministic gradient and Soft policy trainers

    Other trainers can support RNN models in future but is not implemented in the initial release.

    See this paper for the details of the DRQN algorithm.

    opened by ishihara-y 1
  • Implement SACD

    Implement SACD

    This PR implements SAC-D algorithm. https://arxiv.org/abs/2206.13901

    These changes have been made:

    • New environments with factored reward functions have been added
      • FactoredLunarLanderContinuousV2NNablaRL-v1
      • FactoredAntV4NNablaRL-v1
      • FactoredHopperV4NNablaRL-v1
      • FactoredHalfCheetahV4NNablaRL-v1
      • FactoredWalker2dV4NNablaRL-v1
      • FactoredHumanoidV4NNablaRL-v1
    • SACD algorithms has been added
    • SoftQDTrainer has been added
    • _InfluenceMetricsEvaluator has been added
    • reproduction script has been added (not benchmarked yet)

    visualizing influence metrics

    import gym
    
    import numpy as np
    import matplotlib.pyplot as plt
    
    import nnabla_rl.algorithms as A
    import nnabla_rl.hooks as H
    import nnabla_rl.writers as W
    from nnabla_rl.utils.evaluator import EpisodicEvaluator
    
    env = gym.make("FactoredLunarLanderContinuousV2NNablaRL-v1")
    eval_env = gym.make("FactoredLunarLanderContinuousV2NNablaRL-v1")
    
    evaluation_hook = H.EvaluationHook(
        eval_env,
        EpisodicEvaluator(run_per_evaluation=10),
        timing=5000,
        writer=W.FileWriter(outdir="logdir", file_prefix='evaluation_result'),
    )
    iteration_num_hook = H.IterationNumHook(timing=100)
    
    config = A.SACDConfig(gpu_id=0, reward_dimension=9)
    sacd = A.SACD(env, config=config)
    sacd.set_hooks([iteration_num_hook, evaluation_hook])
    sacd.train_online(env, total_iterations=100000)
    
    influence_history = []
    
    state = env.reset()
    while True:
        action = sacd.compute_eval_action(state)
        influence = sacd.compute_influence_metrics(state, action)
        influence_history.append(influence)
        state, _, done, _ = env.step(action)
        if done:
            break
    
    influence_history = np.array(influence_history)
    for i, label in enumerate(["position", "velocity", "angle", "left_leg", "right_leg", "main_eingine", "side_engine", "failure", "success"]):
        plt.plot(influence_history[:, i], label=label)
    plt.xlabel("step")
    plt.ylabel("influence metrics")
    plt.legend()
    plt.show()
    

    image

    sample animation

    sample

    opened by ishihara-y 0
  • Add gmm and Update gaussian

    Add gmm and Update gaussian

    Added gmm and gaussian of the numpy models. In addition, updated the gaussian distribution's API.

    The API change is like following:

    Previous :

    batch_size = 10
    output_dim = 10
    input_shape = (batch_size, output_dim)
    mean = np.zeros(shape=input_shape)
    sigma = np.ones(shape=input_shape) * 5.
    ln_var = np.log(sigma) * 2.
    distribution = D.Gaussian(mean, ln_var)
    # return nn.Variable
    assert isinstance(distribution.sample(), nn.Variable)
    

    Updated:

    batch_size = 10
    output_dim = 10
    input_shape = (batch_size, output_dim)
    mean = np.zeros(shape=input_shape)
    sigma = np.ones(shape=input_shape) * 5.
    ln_var = np.log(sigma) * 2.
    # You have to pass the nn.Variable if you want to get nn.Variable as all class method's return.
    distribution = D.Gaussian(nn.Variable.from_numpy_array(mean), nn.Variable.from_numpy_array(ln_var))
    assert isinstance(distribution.sample(), nn.Variable)
    
    # If you pass np.ndarray, then all class methods return np.ndarray
    # Currently, only support without batch shape (i.e. mean.shape = (dims,), ln_var.shape = (dims, dims)).
    distribution = D.Gaussian(mean[0], np.diag(ln_var[0]))  # without batch
    assert isinstance(distribution.sample(), np.ndarray)
    
    opened by sbsekiguchi 0
  • Support nnabla-browser

    Support nnabla-browser

    • [x] add MonitorWriter
    • [x] save computational graph as nntxt

    example

    import gym
    
    import nnabla_rl.algorithms as A
    import nnabla_rl.hooks as H
    import nnabla_rl.writers as W
    from nnabla_rl.utils.evaluator import EpisodicEvaluator
    
    # save training computational graph
    training_graph_hook = H.TrainingGraphHook(outdir="test")
    
    # evaluation hook with nnabla's Monitor
    eval_env = gym.make("Pendulum-v0")
    evaluator = EpisodicEvaluator(run_per_evaluation=10)
    evaluation_hook = H.EvaluationHook(
        eval_env,
        evaluator,
        timing=10,
        writer=W.MonitorWriter(outdir="test", file_prefix='evaluation_result'),
    )
    
    env = gym.make("Pendulum-v0")
    sac = A.SAC(env)
    sac.set_hooks([training_graph_hook, evaluation_hook])
    
    sac.train_online(env, total_iterations=100)
    

    image image

    opened by ishihara-y 0
  • Add iLQR and LQR

    Add iLQR and LQR

    Implementation of Linear Quadratic Regulator (LQR) and iterative LQR algorithms.

    Co-authored-by: Yu Ishihara [email protected] Co-authored-by: Shunichi Sekiguchi [email protected]

    opened by ishihara-y 0
  • Check np_random instance and use correct randint alternative

    Check np_random instance and use correct randint alternative

    I am not sure when this change was made but in some environment, gym.unwrapped.np_random returns Generator instead of RandomState.

    # in case of RandomState
    # this line works
    gym.unwrapped.np_random.rand_int(...)
    # in case of Generator
    # rand_int does not exist and we must use integers as an alternative
    gym.unwrapped.np_random.integers(...)
    

    This PR will fix this issue and chooses correct function for sampling integers.

    opened by ishihara-y 0
  • Add icra2018 qtopt

    Add icra2018 qtopt

    opened by sbsekiguchi 0
Releases(v0.12.0)
Owner
Sony
Sony Group Corporation
Sony
Gera um PDF, logo depois de vocรช responder um questionรกrio simples, e envia para o e-mail que vocรช informar.

PDF generator and send it for your email Criador: Francisco Robson de O. Dutra Filho Repositรณrio criado no dia 18/09/2021 Instagram: @robsondutra_ Sob

8 Nov 22, 2021
Smilecreator4 - This site is for people who want to hack or want to learn it!

smilecreator4 This site is for people who want to hack or want to learn it! Furthermore, this program does not work without turning off Antivirus or W

1 Jan 04, 2022
Simple script to extract useful informations from the combo BloodHound + Neo4j

bloodhound-quickwin Simple script to extract useful informations from the combo BloodHound + Neo4j. Can help to choose a target. Prerequisites python3

140 Dec 21, 2022
Dashboard to monitor the performance of your Binance Futures account

futuresboard A python based scraper and dashboard to monitor the performance of your Binance Futures account. Note: A local sqlite3 database config/fu

86 Dec 29, 2022
Cities bot - A simple example of using aiogram and the wikipedia package

Cities game A simple example of using aiogram and the wikipedia package. The bot

Artem Meller 2 Jan 29, 2022
discord.js nuker (50 bans a sec)

js-nuker discord.js nuker (50 bans a sec) I was to lazy to make the scraper in js, but this works too. DISCLAIMER This is tool was made for educationa

4 Sep 11, 2021
A customizable, multilanguage Telegram shop bot with Telegram Payments support

Greed A customizable, multilanguage Telegram shop bot with Telegram Payments support! Demo Send a message to @greedtestbot on Telegram to view a demo

Stefano Pigozzi 328 Dec 29, 2022
Construindo API's robustas utilizando Python

๐Ÿ‚ Construindo API's robustas utilizando Python Neste tutorial vamos aprender a construir API's utilizando Python e FastAPI, integrรก-las a serviรงos ex

luizalabs 296 Dec 13, 2022
This code is for a bot which will find a Twitter user's most tweeted word and tweet that word, tagging said user

max_tweeted_word This code is for a bot which will find a Twitter user's most tweeted word and tweet that word, tagging said user The program uses twe

Yasho Bapat 1 Nov 29, 2021
Telegram PHub Bot using ARQ Api and Pyrogram. This Bot can Download and Send PHub HQ videos in Telegram using ARQ API.

Tg_PHub_Bot Telegram PHub Bot using ARQ Api and Pyrogram. This Bot can Download and Send PHub HQ videos in Telegram using ARQ API. OS Support All linu

TheProgrammerCat 13 Oct 21, 2022
RequestTrackerBot - Request Tracker Bot With Python

Request Tracker Bot This is a Request Tracker Bot repo, It is for those who uplo

Prince Jaiswal 1 Dec 30, 2021
Automate coin farming for dankmemer. Unlimited accounts at once. Uses a proxy

dankmemer-farm Simple script to farm Dankmemer coins with multiple accounts at once. Requires: Proxies, Discord Tokens Disclaimer I don't take respons

Scobra 12 Dec 20, 2022
This Bot Can Upload Video from Link Of Pdisk to Pdisk using its API. @PredatorHackerzZ

๐๐๐ข๐ฌ๐ค ๐‚๐จ๐ง๐ฏ๐ž๐ซ๐ญ๐ž๐ซ ๐๐จ๐ญ Make short link by using ๐๐๐ข๐ฌ๐ค API key Installation ๐“๐ก๐ž ๐„๐š๐ฌ๐ฒ ๐–๐š๐ฒ ๐‘๐ž๐ช๐ฎ๐ข๐ซ๐ž๐ ๐•๐š๐ซ๐ข๐š๐›๐ฅ๐ž

ฯัั”โˆ‚ฮฑั‚ฯƒั 25 Dec 02, 2022
Cogs for Red-DiscordBot

matcha-cogs Cogs for Red-DiscordBot. Installation [p]repo add matcha-cogs

MatchaTeaLeaf 2 Aug 27, 2022
Security Monkey monitors AWS, GCP, OpenStack, and GitHub orgs for assets and their changes over time.

NOTE: Security Monkey is in maintenance mode and will be end-of-life in 2020. For AWS users, please make use of AWS Config. For GCP users, please make

Netflix, Inc. 4.3k Jan 09, 2023
bot for hearthstone mercenaries

Hearthstone-Mercenaries-game-bot - prevention: Bot is not ready and now on the development stage estimated release date - 21.10.21 The main idea of th

Andrew Efimov 59 Dec 12, 2022
Yet another Wahrheit-oder-Pflicht bot for Telegram, because all the others suck.

Der WoPperBot Yet another Wahrheit-oder-Pflicht bot for Telegram, because all the others suck. The existing bots are all defunct or incomplete. So I w

Ben Wiederhake 9 Nov 15, 2022
Automate saving your Discover Weekly Playlist using Python.

SpotWeekly Automate saving your Discover Weekly Playlist using Python. Made with 3 and FastAPI. The saved playlist link is sent to my discord server

shourya 6 Jan 03, 2022
API to retrieve the number of grades on the OGE website (Website listing the grades of students) to know if a new grade is available. If a new grade has been entered, the program sends a notification e-mail with the subject.

OGE-ESIREM-API Introduction API to retrieve the number of grades on the OGE website (Website listing the grades of students) to know if a new grade is

Benjamin Milhet 5 Apr 27, 2022
Recommendation systems are among most widely preffered marketing strategies.

Recommendation systems are among most widely preffered marketing strategies. Their popularity comes from close prediction scores obtained from relationships of users and items. In this project, two r

Sรผbeyte 8 Oct 06, 2021