HyperBlend is a new type of hyperspectral image simulator based on Blender.

Overview

HyperBlend version 0.1.0

This is the HyperBlend leaf spectra simulator developed in Spectral Laboratory of University of Jyväskylä. You can use and modify this software under MIT licence.

Currently, HyperBlend can only simulate point-spectrometer-like spectral data. It needs actual measured reflectance and transmittance data which it tries to replicate.

Installing

Clone the repository to some location on your machine. Create a python environment by running conda env create -n hb --file hb_env.yml in yor anaconda command prompt when in project root directory. Use your favourite IDE for editing and running the code (developed using PyCharm). Command line build and run is untested, but it should work as well.

You will also need open-source 3D-modeling and rendering software Blender, which you can download and install from (blender.org). At least versions 2.8x and 2.9x should work (developed on version 2.93.5). Change your Blender executable path to constants.py.

Working principle

The measured reflectances and transmittances look like this:

wavelength [nm] reflectance transmittance
400 0.21435 0.26547
401 0.21431 0.26540
... ... ...

We call this the target. Reflectance and transmittance values represent the fraction of reflected and transmitted light so both values are separately bound to closed interval [0,1] and their sum cannot exceed 1.

We use a Blender scene with a rectangular box that represents a leaf. The material of the leaf has four adjustable parameters: absorption particle density, scattering particle density, scattering anisotropy, and mix factor. These control how the light is scattered and absorbed in the leaf material.

For each wavelength in the target, we adjust the leaf material parameters until the modeled reflectance and transmittance match the target values.

Usage

The entry point of the software is __main__.py file. For testing the software without actual data, run

from src import presets

presets.optimize_default_target()

that uses hard-coded test spectrum of a leaf.

The base element of the software is a measurement set identified by set_name, which consists of one or more samples identified by sample_id. To initialize a new set, initialize an Optimization object which will create a directory structure for given set_name under optimization directory.

To use real measured data, you should use

data.toml_handling.write_target(set_name:str, data, sample_id=0)

where data is a list of wavelength, reflectance, transmittance 3-tuples (or lists). This will write the data to disk in human-readable toml-formatted form that the rest of the code can understand.

Now you can start the optimization process. To summarize a simple use case in one snippet:

from src.optimization import Optimization
from data import toml_handlling as TH

data = [[400, 0.21435, 0.26547], [401, 0.21431, 0.26540]]
set_name = 'test_set'

o = Optimization(set_name)
TH.write_target(set_name, data, sample_id=0)
o.run_optimization()

The results are written onto disk in the set's directory as toml files and plotted to .png images.

Project structure, i.e., where to find stuff

Descriptions of the most important files.

  • optimization Optimization results and targets are stored here in set-wise sub-directories.
  • src Top level source code package.
    • __main__.py Entrypoint of the software.
    • constants.py Mainly names of things that should not be changed unless you are sure what you are doing. With the exception of path to Blender executable that you have to change to match your installation.
    • optimization.py Optimization work is done here.
    • plotter.py Responsible for plotting the results.
    • presets.py Default runnable example with hard-coded spectral values.
    • data Package responsible for data structure. Making changes in here will likely result in failure to read old optimization results.
      • file_handling.py Creation and removal of files and directories. Data structure reduction and expansion for more convenient file sharing.
      • file_names.py Knows all filenames in the project. Generator-parser pairs.
      • path_handling.py Knows the most important paths used in the project. Some paths may still need to be generated manually.
      • toml_handling.py Writing and reading of result data files.
    • rendering Package responsible for calling Blender.
    • utils Package containing miscellaneous utility modules.
  • bs_render_single.py Blender render script file.
  • scene_leaf_material.blend Bender scene file that is run by the bs_render_single.py.
You might also like...
Program to export all new icons from the latest Fortnite patch

Assets Exporter This program allows you to generate all new icons of a patch in png! Requierements Python =3.8 (installed on your computer) If you wa

An open source image editor which can manipulate an image in many ways!

Image Editor - An open source image editor which can manipulate an image in many ways! If you need any more modes in repo or I

Image enhancing model for making a blurred image to be somehow clearer than before

This is a very small prject which helps in enhancing the images by taking a Input images. This project has many features like detcting the faces and enhaning the faces itself and also a feature which enhances the whole image

Easily turn large sets of image urls to an image dataset. Can download, resize and package 100M urls in 20h on one machine.
Easily turn large sets of image urls to an image dataset. Can download, resize and package 100M urls in 20h on one machine.

img2dataset Easily turn large sets of image urls to an image dataset. Can download, resize and package 100M urls in 20h on one machine. Also supports

A pure python implementation of the GIMP XCF image format. Use this to interact with GIMP image formats
A pure python implementation of the GIMP XCF image format. Use this to interact with GIMP image formats

Pure Python implementation of the GIMP image formats (.xcf projects as well as brushes, patterns, etc)

Image Reading, Metadata Conversion, and Image Writing for Microscopy Images in Python

AICSImageIO Image Reading, Metadata Conversion, and Image Writing for Microscopy Images in Pure Python Features Supports reading metadata and imaging

This app finds duplicate to near duplicate images by generating a hash value for each image stored with a specialized data structure called VP-Tree which makes searching an image on a dataset of 100Ks almost instantanious
This app finds duplicate to near duplicate images by generating a hash value for each image stored with a specialized data structure called VP-Tree which makes searching an image on a dataset of 100Ks almost instantanious

Offline Reverse Image Search Overview This app finds duplicate to near duplicate images by generating a hash value for each image stored with a specia

Quickly 'anonymize' all people in an image. This script will put a black bar over all eye-pairs in an image

Face-Detacher Quickly 'anonymize' all people in an image. This script will put a black bar over all eye-pairs in an image This is a small python scrip

Fast Image Retrieval is an open source image retrieval framework

Fast Image Retrieval is an open source image retrieval framework release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This framework implements most of the major binary hashing methods, together with both popular backbone networks and public datasets.

Comments
  • Usage of the program

    Usage of the program

    Hi!

    Thanks for this implementation, I have been looking to run it since a couple of days but I can't get it to be done. Is there any tutorial or instructions for somebody who is new to this type of software (and blender)? I tried running bs_render_single.py from IDE, from Conda Prompt, and from blender itself, but nothing seems to work.

    Also, I tried to run main.py from windows cmd, from my IDE, and from Conda prompt, but it throws errors in references. I tried changing all the references to match what is being called, but I end up with an error that some files (and the directory optimization) does not exist. Tried to run code from the readme, but still can't get to work.

    Would be very helpful if somebody can help me through some basic follow up on how to run this implementation.

    Best regards!

    opened by fieterovich 12
Releases(v0.2.0)
  • v0.2.0(Nov 28, 2022)

    This is the second released version of HyperBlend on our way towards a full canopy scale vegetation simulator. HyperBlend is developed in Spectral Laboratory of University of Jyväskylä by Kimmo Riihiaho (kimmo.a.riihiaho at jyu.fi).

    Version 0.2.0 will break many things in the previous version. Don't expect simulations created in 0.1.0 to work. Also the folder structure and some constants have been reorganized and renamed.

    Main improvements in this version:

    1. Simulation speed 200 times faster (simulation accuracy decreases 2-4 times)
      • You can still use the old simulation method if you need maximum accuracy
    2. Incorporation of the PROSPECT leaf model
      • You can now use PROSPECT parameters such as water thickness and chlorophyll content
      • It is fairly simple to plug in any other leaf model you would like. Just follow how our local prospect module does it, and you should be fine
    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Nov 11, 2021)

    This is the first release of HyperBlend. This release only demonstrates the usability of Blender in simulating hyperspectral reflectance and transmittance properties of plant leaves. Future releases will add more useful functionalities to the software.

    Created by @11kaks

    Source code(tar.gz)
    Source code(zip)
Owner
SILMAE
Spectral Imaging Laboratory for Multidisciplinary Analysis and Expertise
SILMAE
Python Image Optimizer Script

Image-Optimizer Download and Install git clone https://github.com/stefankumpan/Image-Optimizer-Script.git cd Image-Optimizer-Script pip install -r req

Stefan Kumpan 0 Jul 15, 2021
A python script for extracting/removing exif data from images by @AbirHasan2005

Image-Exif A Python script for extracting exif metadata from images. How to use? Using this script you can extract exif data from image and save in .c

Abir Hasan 13 Dec 16, 2022
HTML2Image is a lightweight Python package that acts as a wrapper around the headless mode of existing web browsers to generate images from URLs and from HTML+CSS strings or files.

A package acting as a wrapper around the headless mode of existing web browsers to generate images from URLs and from HTML+CSS strings or files.

176 Jan 01, 2023
🎨 Generate and change color-schemes on the fly.

Generate and change color-schemes on the fly. Pywal is a tool that generates a color palette from the dominant colors in an image. It then applies the

dylan 6.9k Jan 03, 2023
Craft PNG files that appear completely different in Apple software

Ambiguous PNG Packer Craft PNG files that appear completely different in Apple software

David Buchanan 1k Dec 29, 2022
Panel Competition Image Generator

Panel Competition Image Generator This project was build by a member of the NFH community and is open for everyone who wants to try it. Relevant links

Juliano Mendieta 1 Oct 22, 2021
A functional and efficient python implementation of the 3D version of Maxwell's equations

py-maxwell-fdfd Solving Maxwell's equations via A python implementation of the 3D curl-curl E-field equations. This code contains additional work to e

Nathan Zhao 12 Dec 11, 2022
A Toolbox for Image Feature Matching and Evaluations

This is a toolbox repository to help evaluate various methods that perform image matching from a pair of images.

Qunjie Zhou 342 Dec 29, 2022
Generate different types of random avatars.

avatar-generator Generate different types of random avatars. Requirements Python3 pytorch=1.6 cv2=3.4 tqdm 1. Github-like avatars python generate_gi

Ming 11 Apr 02, 2022
A Python package implementing various CFA (Colour Filter Array) demosaicing algorithms and related utilities.

Colour - Demosaicing A Python package implementing various CFA (Colour Filter Array) demosaicing algorithms and related utilities. It is open source a

colour-science 218 Dec 04, 2022
A tool for hiding data inside of images

Stegenography-tool a tool for hiding data inside of images Quick test: do python steg-encode.py test/message.txt test/covid19.png to generate the test

luke 2 Nov 02, 2021
Rotates your images in the spirit of rot13

Image Rotator (imrot10) Its like rot13 but for images. Calling the algorithm imrot10 for im = image, rot = rotation, 10 = default magnitude. Unfortuna

Sarah 2 Dec 10, 2021
Python avatar generator for absolute nerds

pagan Welcome to the Python Avatar Generator for Absolute Nerds. Current version: 0.4.3 View the change history here. Remember those good old days whe

David Bothe 280 Dec 16, 2022
This repository will help you get label for images in Stanford Cars Dataset.

STANFORD CARS DATASET stanford-cars "The Cars dataset contains 16,185 images of 196 classes of cars. The data is split into 8,144 training images and

Nguyễn Trường Lâu 3 Sep 20, 2022
👾 Python project to help you convert any image into a pixel art.

👾 Pixel Art Generator Python project to help you convert any image into a pixel art. ⚙️ Developer's Guide Things you need to get started with this co

Atul Anand 6 Dec 14, 2022
CadQuery is an intuitive, easy-to-use Python module for building parametric 3D CAD models.

A python parametric CAD scripting framework based on OCCT

1.9k Dec 30, 2022
A Python3 library to generate dynamic SVGs

The Python library for generating dynamic SVGs using Python3

1 Dec 23, 2021
Me cleaner - Tool for partial deblobbing of Intel ME/TXE firmware images

me_cleaner me_cleaner is a Python script able to modify an Intel ME firmware image with the final purpose of reducing its ability to interact with the

Nicola Corna 4.1k Jan 08, 2023
Extract the temperature data of each wire from the thermal imager raw data.

Wire-Tempurature-Detection Extract the temperature data of each wire from the thermal imager raw data. The motivation of this computer vision project

JohanAckerman 1 Nov 03, 2021
An executor that wraps 3D mesh models and encodes 3D content documents to d-dimension vector.

3D Mesh Encoder An Executor that receives Documents containing point sets data in its blob attribute, with shape (N, 3) and encodes it to embeddings o

Jina AI 11 Dec 14, 2022