The tutorial is a collection of many other resources and my own notes

Overview
# TOC

Before reading
the tutorial is a collection of many other resources and my own notes. Note that the ref if any in the tutorial means the whole passage. And part to be referred if any means the part has been summarized or detailed by me. Feel free to click the [the part to be referred] to read the original.

CTC_pytorch

1. Why we need CTC? ---> looking back on history

Feel free to skip it if you already know the purpose of CTC coming into being.

1.1. About CRNN

We need to learn CRNN because in the context we need an output to be a sequence.

ref: the overview from CRNN to CTC !! highly recommended !!

part to be referred

multi-digit sequence recognition

  • Characted-based
  • word-based
  • sequence-to-sequence
  • CRNN = CNN + RNN
    • CNN --> relationship between pixel
    • (the small fonts) Specifially, each feature vec of a feature seq is generated from left to right on the feature maps. That means the i-th feature vec is the concatenation of the columns of all the maps. So the shape of the tensor can be reshaped as e.g. (batch_size, 32, 256)

image1



1.2. from Cross Entropy Loss to CTC Loss

Usually, CE is applied to compute loss as the following way. And gt(also target) can be encoded as a stable matrix or vector.

image2

However, in OCR or audio recognition, each target input/gt has various forms. e.g. "I like to play piano" can be unpredictable in handwriting.

image3

Some stroke is longer than expected. Others are short.
Assume that the above example is encoded as number sequence [5, 3, 8, 3, 0].

image4

  • Tips: blank(the blue box symbol here) is introduced because we allow the model to predict a blank label due to unsureness or the end comes, which is similar with human when we are not pretty sure to make a good prediction. ref:lihongyi lecture starting from 3:45

Therefore, we see that this is an one-to-many question where e.g. "I like to play piano" has many target forms. But we not just have one sequence. We might also have other sequence e.g. "I love you", "Not only you but also I like apple" etc, none of which have a same sentence length. And this is what cross entropy cannot achieve in one batch. But now we can encode all sequences/sentences into a new sequence with a max length of all sequences.

e.g.
"I love you" --> len = 10
"How are you" --> len = 11
"what's your name" --> len = 16

In this context the input_length should be >= 16.

For dealing with the expanded targets, CTC is introduced by using the ideas of (1) HMM forward algorithm and (2) dynamic programing.

2. Details about CTC

2.1. intuition: forward algorithm

image5

image6

Tips: the reason we have - inserted between each two token is because, for each moment/horizontal(Note) position we allow the model to predict a blank representing unsureness.

Note that moment is for audio recognition analogue. horizontal position is for OCR analogue.



2.2. implementation: forward algorithm with dynamic programming

the complete code is CTC.py

given 3 samples, they are
"orange" :[15, 18, 1, 14, 7, 5]    len = 6
"apple" :[1, 16, 16, 12, 5]    len = 5
"watermelon" :[[23, 1, 20, 5, 18, 13, 5, 12, 15, 14]  len = 10

{0:blank, 1:A, 2:B, ... 26:Z}

2.2.1. dummy input ---> what the input looks like

# ------------ a dummy input ----------------
log_probs = torch.randn(15, 3, 27).log_softmax(2).detach().requires_grad_()# 15:input_length  3:batchsize  27:num of token(class)
# targets = torch.randint(0, 27, (3, 10), dtype=torch.long)
targets = torch.tensor([[15, 18, 1,  14, 7, 5,  0, 0,  0,  0],
                        [1,  16, 16, 12, 5, 0,  0, 0,  0,  0],
                        [23, 1,  20, 5, 18, 13, 5, 12, 15, 14]]
                        )

# assume that the prediction vary within 15 input_length.But the target length is still the true length.
""" 
e.g. [a,0,0,0,p,0,p,p,p, ...l,e] is one of the prediction
 """
input_lengths = torch.full((3,), 15, dtype=torch.long)
target_lengths = torch.tensor([6,5,10], dtype = torch.long)



2.2.2. expand the target ---> what the target matrix look like

Recall that one target can be encoded in many different forms. So we introduce a targets mat to represent it as follows.

"-d-o-g-" ">
target_prime = targets.new_full((2 * target_length + 1,), blank) # create a targets_prime full of zero

target_prime[1::2] = targets[i, :target_length] # equivalent to insert blanks in targets. e.g. targets = "dog" --> "-d-o-g-"

Now we got target_prime(also expanded target) for e.g. "apple"
target_prime is
tensor([ 0, 1, 0, 16, 0, 16, 0, 12, 0, 5, 0]) which is visualized as the red part(also t1)

image7

Note that the t8 is only for illustration. In the example, the width of target matrix should be 15(input_length).

probs = log_probs[:input_length, i].exp()

Then we convert original inputs from log-space like this, referring to "In practice, the above recursion ..." in original paper https://www.cs.toronto.edu/~graves/icml_2006.pdf

2.3. Alpha Matrix

image8

# alpha matrix init at t1 indicated by purple boxes.
alpha_col = log_probs.new_zeros((target_length * 2 + 1,))
alpha_col[0] = probs[0, blank] # refers to green box
alpha_col[1] = probs[0, target_prime[1]]
  • blank is the index of blank(here it's 0)
  • target_prime[1] refers to the 1-st index of the token. e.g. "apple": "a", "orange": "o"

2.4. Dynamic programming based on 3 conditions

refer to the details in CTC.py

reference:

Owner
手写AI
手写AI
Netbox Dns is a netbox plugin for managing zone, nameserver and record inventory.

Netbox DNS Netbox Dns is a netbox plugin for managing zone, nameserver and record inventory. Features Manage zones (domains) you have. Manage nameserv

Aurora Research Lab 155 Jan 06, 2023
OpenAPI Spec validator

OpenAPI Spec validator About OpenAPI Spec Validator is a Python library that validates OpenAPI Specs against the OpenAPI 2.0 (aka Swagger) and OpenAPI

A 241 Jan 05, 2023
A markdown wiki and dashboarding system for Datasette

datasette-notebook A markdown wiki and dashboarding system for Datasette This is an experimental alpha and everything about it is likely to change. In

Simon Willison 19 Apr 20, 2022
Leetcode Practice

LeetCode Practice Description This is my LeetCode Practice. Visit LeetCode Website for detailed question description. The code in this repository has

Leo Hsieh 75 Dec 27, 2022
This program has been coded to allow the user to rename all the files in the entered folder.

Bulk_File_Renamer This program has been coded to allow the user to rename all the files in the entered folder. The only required package is "termcolor

1 Jan 06, 2022
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your

BDFD 6 Nov 05, 2022
✨ Real-life Data Analysis and Model Training Workshop by Global AI Hub.

🎓 Data Analysis and Model Training Course by Global AI Hub Syllabus: Day 1 What is Data? Multimedia Structured and Unstructured Data Data Types Data

Global AI Hub 71 Oct 28, 2022
A simple malware that tries to explain the logic of computer viruses with Python.

Simple-Virus-With-Python A simple malware that tries to explain the logic of computer viruses with Python. What Is The Virus ? Computer viruses are ma

Xrypt0 6 Nov 18, 2022
epub2sphinx is a tool to convert epub files to ReST for Sphinx

epub2sphinx epub2sphinx is a tool to convert epub files to ReST for Sphinx. It uses Pandoc for converting HTML data inside epub files into ReST. It cr

Nihaal 8 Dec 15, 2022
💡 Catatan Materi Bahasa Pemrogramman Python

Repository catatan kuliah Andika Tulus Pangestu selama belajar Dasar Pemrograman dengan Python.

0 Oct 10, 2021
A Power BI/Google Studio Dashboard to analyze previous OTC CatchUps

OTC CatchUp Dashboard A Power BI/Google Studio dashboard analyzing OTC CatchUps. File Contents * ├───data ├───old summaries ─── *.md ├

11 Oct 30, 2022
Proyecto - Desgaste y rendimiento de empleados de IBM HR Analytics

Acceder al código desde Google Colab para poder ver de manera adecuada todas las visualizaciones y poder interactuar con ellas. Links de acceso: Noteb

1 Jan 31, 2022
Uses diff command to compare expected output with student's submission output

AUTOGRADER for GRADESCOPE using diff with partial grading Description: Uses diff command to compare expected output with student's submission output U

2 Jan 11, 2022
BakTst_Org is a backtesting system for quantitative transactions.

BakTst_Org 中文reademe:传送门 Introduction: BakTst_Org is a prototype of the backtesting system used for BTC quantitative trading. This readme is mainly di

18 May 08, 2021
Documentation for the lottie file format

Lottie Documentation This repository contains both human-readable and machine-readable documentation about the Lottie format The documentation is avai

LottieFiles 25 Jan 05, 2023
Plugins for MkDocs.

Plugins for MkDocs and Python Markdown pip install neoteroi-mkdocs This package includes the following plugins and extensions: Name Description Type m

35 Dec 23, 2022
OpenAPI (f.k.a Swagger) Specification code generator. Supports C#, PowerShell, Go, Java, Node.js, TypeScript, Python

AutoRest The AutoRest tool generates client libraries for accessing RESTful web services. Input to AutoRest is a spec that describes the REST API usin

Microsoft Azure 4.1k Jan 06, 2023
📘 OpenAPI/Swagger-generated API Reference Documentation

Generate interactive API documentation from OpenAPI definitions This is the README for the 2.x version of Redoc (React-based). The README for the 1.x

Redocly 19.2k Jan 02, 2023
Type hints support for the Sphinx autodoc extension

sphinx-autodoc-typehints This extension allows you to use Python 3 annotations for documenting acceptable argument types and return value types of fun

Alex Grönholm 462 Dec 29, 2022
The purpose of this project is to share knowledge on how awesome Streamlit is and can be

Awesome Streamlit The fastest way to build Awesome Tools and Apps! Powered by Python! The purpose of this project is to share knowledge on how Awesome

Marc Skov Madsen 1.5k Jan 07, 2023