Python package for analyzing sensor-collected human motion data

Overview

Installation | Requirements | Usage | Contribution | Getting Help

Sensor Motion

PyPI - Python Version PyPI GitHub issues https://readthedocs.org/projects/sensormotion/badge/?version=latest https://badges.gitter.im/gitterHQ/gitter.png

Python package for analyzing sensor-collected human motion data (e.g. physical activity levels, gait dynamics).

Dedicated accelerometer devices, such as those made by Actigraph, usually bundle software for the analysis of the sensor data. In my work I often collect sensor data from smartphones and have not been able to find any comparable analysis software.

This Python package allows the user to extract human motion data, such as gait/walking dynamics, directly from accelerometer signals. Additionally, the package allows for the calculation of physical activity (PA) or moderate-to-vigorous physical activity (MVPA) counts, similar to activity count data offered by companies like Actigraph.

Installation

You can install this package using pip:

pip install sensormotion

Requirements

This package has the following dependencies, most of which are just Python packages:

  • Python 3.x
    • The easiest way to install Python is using the Anaconda distribution, as it also includes the other dependencies listed below
    • Python 2.x has not been tested, so backwards compatibility is not guaranteed
  • numpy
    • Included with Anaconda. Otherwise, install using pip (pip install numpy)
  • scipy
    • Included with Anaconda. Otherwise, install using pip (pip install scipy)
  • matplotlib
    • Included with Anaconda. Otherwise, install using pip (pip install matplotlib)

Usage

Here is brief example of extracting step-based metrics from raw vertical acceleration data:

Import the package:

import sensormotion as sm

If you have a vertical acceleration signal x, and its corresponding time signal t, we can begin by filtering the signal using a low-pass filter:

b, a = sm.signal.build_filter(frequency=10,
                              sample_rate=100,
                              filter_type='low',
                              filter_order=4)

x_filtered = sm.signal.filter_signal(b, a, signal=x)

images/filter.png

Next, we can detect the peaks (or valleys) in the filtered signal, which gives us the time and value of each detection. Optionally, we can include a plot of the signal and detected peaks/valleys:

peak_times, peak_values = sm.peak.find_peaks(time=t, signal=x_filtered,
                                             peak_type='valley',
                                             min_val=0.6, min_dist=30,
                                             plot=True)

images/peak_detection.png

From the detected peaks, we can then calculate step metrics like cadence and step time:

cadence = sm.gait.cadence(time=t, peak_times=peak_times, time_units='ms')
step_mean, step_sd, step_cov = sm.gait.step_time(peak_times=peak_times)

Physical activity counts and intensities can also be calculated from the acceleration data:

x_counts = sm.pa.convert_counts(x, time, integrate='simpson')
y_counts = sm.pa.convert_counts(y, time, integrate='simpson')
z_counts = sm.pa.convert_counts(z, time, integrate='simpson')
vm = sm.signal.vector_magnitude(x_counts, y_counts, z_counts)
categories, time_spent = sm.pa.cut_points(vm, set_name='butte_preschoolers', n_axis=3)

images/pa_counts.png

For a more in-depth tutorial, and more workflow examples, please take a look at the tutorial.

I would also recommend looking over the documentation to see other functionalities of the package.

Contribution

I work on this package in my spare time, on an "as needed" basis for my research projects. However, pull requests for bug fixes and new features are always welcome!

Please see the develop branch for the development version of the package, and check out the issues page for bug reports and feature requests.

Getting Help

You can find the full documentation for the package here

Python's built-in help function will show documentation for any module or function: help(sm.gait.step_time)

You're encouraged to post questions, bug reports, or feature requests as an issue

Alternatively, ask questions on Gitter

Comments
  • Question

    Question

    I am using sensormotion.py package for finding peaks for one of my applications. I want to know how normalized min_value (0-1) in peak.find_peaks is related to minimum detectable peak value.

    opened by vivekmahadev 2
  • I need help using this library!

    I need help using this library!

    Hi

    I'm very interested in using this library in my project. I have a test of 2min walking at 100Hz and I collect the data from accelerometer, gyro and magnetometer of an Iphone 6.

    I'm trying to use the library with my data but I could understand some things. For example this function sm.peak.find_peaks(ac_lags, ac, peak_type='peak', min_val= 0.6, min_dist=32, plot=True). What are the suitable values of min_val and min_dist parameters? Are they problem dependent? I have tried with many values and the step estimation is not correct.

    Please, could you help me?

    Best regards

    opened by ogreyesp 1
  • sm.gait.step_regularity IndexError

    sm.gait.step_regularity IndexError

    step_reg, stride_reg = sm.gait.step_regularity(ac_peak_values) File ".../python3.6/site-packages/sensormotion-1.1.0-py3.6.egg/sensormotion/gait.py", line 128, in step_regularity ac_d2 = peaks_half[2] # second dominant period i.e. a stride (left-left) sm.gait.step_regularity IndexError: index 2 is out of bounds for axis 0 with size 2

    opened by jiakang 1
  • Example: Importing from live cvs file?

    Example: Importing from live cvs file?

    opened by RandoSY 1
  • Question about step regularity

    Question about step regularity

    Hey, I'm using your package right now to generate features for a dataset. I have looked at the paper by Moe Nilssen et al. and tried to follow the steps for calculating step and stride regularity. However, I wonder why you still do the following calculation at the end:

    step_reg = ac_d1 / ac_lag0 stride_reg = ac_d2 / ac_lag0

    Can you help me with this?

    opened by vanessabin 1
Releases(1.1.4)
Owner
Simon Ho
Data Science | Machine Learning | Statistics | Gaming
Simon Ho
Minimal working example of data acquisition with nidaqmx python API

Data Aquisition using NI-DAQmx python API Based on this project It is a minimal working example for data acquisition using the NI-DAQmx python API. It

Pablo 1 Nov 05, 2021
INF42 - Topological Data Analysis

TDA INF421(Conception et analyse d'algorithmes) Projet : Topological Data Analysis SphereMin Etant donné un nuage des points, ce programme contient de

2 Jan 07, 2022
Nobel Data Analysis

Nobel_Data_Analysis This project is for analyzing a set of data about people who have won the Nobel Prize in different fields and different countries

Mohammed Hassan El Sayed 1 Jan 24, 2022
Using approximate bayesian posteriors in deep nets for active learning

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
Python reader for Linked Data in HDF5 files

Linked Data are becoming more popular for user-created metadata in HDF5 files.

The HDF Group 8 May 17, 2022
track your GitHub statistics

GitHub-Stalker track your github statistics 👀 features find new followers or unfollowers find who got a star on your project or remove stars find who

Bahadır Araz 34 Nov 18, 2022
VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

André Rodrigues 2 Feb 14, 2022
CubingB is a timer/analyzer for speedsolving Rubik's cubes, with smart cube support

CubingB is a timer/analyzer for speedsolving Rubik's cubes (and related puzzles). It focuses on supporting "smart cubes" (i.e. bluetooth cubes) for recording the exact moves of a solve in real time.

Zach Wegner 5 Sep 18, 2022
follow-analyzer helps GitHub users analyze their following and followers relationship

follow-analyzer follow-analyzer helps GitHub users analyze their following and followers relationship by providing a report in html format which conta

Yin-Chiuan Chen 2 May 02, 2022
Pyspark project that able to do joins on the spark data frames.

SPARK JOINS This project is to perform inner, all outer joins and semi joins. create_df.py: load_data.py : helps to put data into Spark data frames. d

Joshua 1 Dec 14, 2021
Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Binomial Option Pricing Calculator Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required) Background A derivative is a fi

sammuhrai 1 Nov 29, 2021
Stitch together Nanopore tiled amplicon data without polishing a reference

Stitch together Nanopore tiled amplicon data using a reference guided approach Tiled amplicon data, like those produced from primers designed with pri

Amanda Warr 14 Aug 30, 2022
My first Python project is a simple Mad Libs program.

Python CLI Mad Libs Game My first Python project is a simple Mad Libs program. Mad Libs is a phrasal template word game created by Leonard Stern and R

Carson Johnson 1 Dec 10, 2021
Average time per match by division

HW_02 Unzip matches.rar to access .json files for matches. Get an API key to access their data at: https://developer.riotgames.com/ Average time per m

11 Jan 07, 2022
First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we want to understand column level lineage and automate impact analysis.

dbt-osmosis First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we wan

Alexander Butler 150 Jan 06, 2023
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022
Supply a wrapper ``StockDataFrame`` based on the ``pandas.DataFrame`` with inline stock statistics/indicators support.

Stock Statistics/Indicators Calculation Helper VERSION: 0.3.2 Introduction Supply a wrapper StockDataFrame based on the pandas.DataFrame with inline s

Cedric Zhuang 1.1k Dec 28, 2022
PipeChain is a utility library for creating functional pipelines.

PipeChain Motivation PipeChain is a utility library for creating functional pipelines. Let's start with a motivating example. We have a list of Austra

Michael Milton 2 Aug 07, 2022
MotorcycleParts DataAnalysis python

We work with the accounting department of a company that sells motorcycle parts. The company operates three warehouses in a large metropolitan area.

NASEEM A P 1 Jan 12, 2022
PrimaryBid - Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift

Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift This project is composed of two parts: Part1 and Part2

Emmanuel Boateng Sifah 1 Jan 19, 2022