Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Overview

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Task

Training huge unsupervised deep neural networks yields to strong progress in the field of Natural Language Processing (NLP). Using these extensively pre-trained networks for particular NLP applications is the current state-of-the-art approach. In this project, we approach the task of ranking possible clarifying questions for a given query. We fine-tuned a pre-trained BERT model to rank the possible clarifying questions in a classification manner. The achieved model scores a top-5 accuracy of 0.4565 on the provided benchmark dataset.

Installation

This project was originally developed with Python 3.8, PyTorch 1.7, and CUDA 11.0. The training requires one NVIDIA GeForce RTX 1080 (11GB memory).

  • Create conda environment:
conda create --name dl4nlp
source activate dl4nlp
  • Install the dependencies:
pip install -r requirements.txt

Run

We use a pretrained BERT-Base by Hugging Face and fine-tune it on the given training dataset. To run training, please use the following command:

python main.py --train

For evaluation on the test set, please use the following command:

python main.py --test

Arguments for training and/or testing:

  • --train: Run training on training dataset. Default: True
  • --val: Run evaluation during training on validation dataset. Default: True
  • --test: Run evaluation on test dataset. Default: True
  • --cuda-devices: Set GPU index Default: 0
  • --cpu: Run everything on CPU. Default: False
  • --data-parallel: Use DataParallel. Default: False
  • --data-root: Path to dataset folder. Default: data
  • --train-file-name: Name of training file name in data-root. Default: training.tsv
  • --test-file-name: Name of test file name in data-root. Default: test_set.tsv
  • --question-bank-name: Name of question bank file name in data-root. Default: question_bank.tsv
  • --checkpoints-root: Path to checkpoints folder. Default: checkpoints
  • --checkpoint-name: File name of checkpoint in checkpoints-root to start training or use for testing. Default: None
  • --runs-root: Path to output runs folder for tensorboard. Default: runs
  • --txt-root: Path to output txt folder for evaluation results. Default: txt
  • --lr: Learning rate. Default: 1e-5
  • --betas: Betas for optimization. Default: (0.9, 0.999)
  • --weight-decay: Weight decay. Default: 1e-2
  • --val-start: Set at which epoch to start validation. Default: 0
  • --val-step: Set at which epoch rate to valide. Default: 1
  • --val-split: Use subset of training dataset for validation. Default: 0.005
  • --num-epochs: Number of epochs for training. Default: 10
  • --batch-size: Samples per batch. Default: 32
  • --num-workers: Number of workers. Default: 4
  • --top-k-accuracy: Evaluation metric with flexible top-k-accuracy. Default: 50
  • --true-label: True label in dataset. Default: 1
  • --false-label: False label in dataset. Default: 0

Example output

User query:

Tell me about Computers

Propagated clarifying questions:

  1. do you like using computers
  2. do you want to know how to do computer programming
  3. do you want to see some closeup of a turbine
  4. are you looking for information on different computer programming languages
  5. are you referring to a software
This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation

RCIL [CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation Chang-Bin Zhang1, Jia-Wen Xiao1, Xialei Liu1, Ying-Cong Chen2

Chang-Bin Zhang 71 Dec 28, 2022
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices, Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th

Linh 11 Oct 10, 2022
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
Only valid pull requests will be allowed. Use python only and readme changes will not be accepted.

❌ This repo is excluded from hacktoberfest This repo is for python beginners and contains lot of beginner python projects for practice. You can also s

Prajjwal Pathak 50 Dec 28, 2022
We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.

[SIGGRAPH Asia 2021] Time-Travel Rephotography [Project Website] Many historical people were only ever captured by old, faded, black and white photos,

298 Jan 02, 2023