Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Overview

Myo Keylogging

This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Gazzari, Annemarie Mattmann, Max Maass and Matthias Hollick in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Volume 5, Issue 4, 2021.

We include the software used for recording the dataset (record folder) and the software for training and running the neural networks (ml folder) as well as analyzing the results (analysis folder). The scripts folder provides some helper scripts for automating batches of hyperparameter optimization, model fitting, analyses and more. The results folder includes a pickled version of the predictions of our models, on which analyses can be run, e.g. to reproduce the paper results.

Installation

To install the project, first clone the repository and change directory into the fresh clone:

git clone https://github.com/seemoo-lab/myo-keylogging.git
cd myo-keylogging

You can use a python virtual environment (or any other virtual environment of your choice):

mkvirtualenv myo --system-site-packages
workon myo

To make sure you have the newest software versions you can run an upgrade:

pip install --upgrade pip setuptools

To install the requirements run:

pip install -r requirements.txt

Finally, import the training and test data into the project. The top level folder should include a folder train-data with all the records for training the models and a folder test-data with all the records for testing the models.

wget https://zenodo.org/record/5594651/files/myo-keylogging-dataset.zip
unzip myo-keylogging-dataset.zip

Using the record library, you can add you can extend this dataset.

Rerun of Results

To reproduce our results from the provided predictions of our models, go to the top level directory and run:

./scripts/create_results.sh

This will recreate all performance value files and plots in the subfolders of the results folder as used in the paper.

Run the following to list the fastest and slowest typists in order to determine their class imbalance in the results/train-data-skew.csv and the results/test-data-skew.csv files:

python -m analysis exp_key_data

To recreate the provided predictions and class skew files, execute the following from the top level directory:

./scripts/create_models.sh
./scripts/create_predictions.sh
./scripts/create_class_skew_files.sh

This will fit the models with the current choice of hyperparameters and run each model on the test dataset to create the required predictions for analysis. Additionally, the class skew files will be recreated.

To run the hyperparameter optimization either run the run_shallow_hpo.sh script or, alternatively, the slurm_run_shallow_hpo.sh script when on a SLURM cluster.

sbatch scripts/slurm_run_shallow_hpo.sh
./scripts/run_shallow_hpo.sh

Afterwards you can use the merge_shallow_hpo_runs.py script to combine the results for easier evaluation of the hyperparameters.

Fit Models

In order to fit and analyze your own models, go to the top level directory and run any of:

python -m ml crnn
python -m ml resnet
python -m ml resnet11
python -m ml wavenet

This will fit the respective model with the default parameters and in binary mode for keystroke detection. In order to fit multiclass models for keystroke identification, use the encoding parameter, e.g.:

python -m ml crnn --encoding "multiclass"

In order to test specific sensors, ignore the others (note that quaternions are ignored by default), e.g. to use only EMG on a CRNN model, use:

python -m ml crnn --ignore "quat" "acc" "gyro"

To run a hyperparameter optimization, run e.g.:

python -m ml crnn --func shallow_hpo --step 5

To gain more information on possible parameters, run e.g.:

python -m ml crnn --help

Some parameters for the neural networks are fixed in the code.

Analyze Models

In order to analyze your models, run apply_models to create the predictions as pickled files. On these you can run further analyses found in the analysis folder.

To run apply_models on a binary model, do:

python -m analysis apply_models --model_path results/<PATH_TO_MODEL> --encoding binary --data_path test-data/ --save_path results/<PATH_TO_PKL> --save_only --basenames <YOUR MODELS>

To run a multiclass model, do:

python -m analysis apply_models --model_path results/<PATH_TO_MODEL> --encoding multiclass --data_path test-data/ --save_path results/<PATH_TO_PKL> --save_only --basenames <YOUR MODELS>

To chain a binary and multiclass model, do e.g.:

python -m analysis apply_models --model_path results/<PATH_TO_MODEL> --encoding chain --data_path test-data/ --save_path results/<PATH_TO_PKL> --save_only --basenames <YOUR MODELS> --tolerance 10

Further parameters interesting for analyses may be a filter on the users with the parameter (--users known or --users unknown) or on the data (--data known or --data unknown) to include only users (not) in the training data or include only data typed by all or no other user respectively.

For more information, run:

python -m analysis apply_models --help

To later recreate model performance results and plots, run:

python -m analysis apply_models --encoding <ENCODING> --load_results results/<PATH_TO_PKL> --save_path results/<PATH_TO_PKL> --save_only

with the appropriate encoding of the model used to create the pickled results.

To run further analyses on the generated predictions, create or choose your analysis from the analysis folder and run:

python -m analysis <ANALYSIS_NAME>

Refer to the help for further information:

python -m analysis <ANALYSIS_NAME> --help

Record Data

In order to record your own data(set), switch to the record folder. To record sensor data with our recording software, you will need one to two Myo armbands connected to your computer. Then, you can start a training data recording, e.g.:

python tasks.py -s 42 -l german record touch_typing --left_tty <TTY_LEFT_MYO> --left_mac <MAC_LEFT_MYO> --right_tty <TTY_RIGHT_MYO> --right_mac <MAC_RIGHT_MYO> --kb_model TADA68_DE

for a German recording with seed 42, a touch typist and a TADA68 German physical keyboard layout or

python tasks.py -s 42 -l english record touch_typing --left_tty <TTY_LEFT_MYO> --left_mac <MAC_LEFT_MYO> --right_tty <TTY_RIGHT_MYO> --right_mac <MAC_RIGHT_MYO> --kb_model TADA68_US

for an English recording with seed 42, a hybrid typist and a TADA68 English physical keyboard layout.

In order to start a test data recording, simply run the passwords.py instead of the tasks.py.

After recording training data, please execute the following script to complete the meta data:

python update_text_meta.py -p ../train-data/

After recording test data, please execute the following two scripts to complete the meta data:

python update_pw_meta.py -p ../test-data/
python update_cuts.py -p ../test-data/

For further information, check:

python tasks.py --help
python passwords.py --help

Note that the recording software includes text extracts as outlined in the acknowledgments below.

Links

Acknowledgments

This work includes the following external materials to be found in the record folder:

  1. Various texts from Wikipedia available under the CC-BY-SA 3.0 license.
  2. The EFF's New Wordlists for Random Passphrases available under the CC-BY 3.0 license.
  3. An extract of the Top 1000 most common passwords by Daniel Miessler, Jason Haddix, and g0tmi1k available under the MIT license.

License

This software is licensed under the GPLv3 license, please also refer to the LICENSE file.

Owner
Secure Mobile Networking Lab
Secure Mobile Networking Lab
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
Convert scikit-learn models to PyTorch modules

sk2torch sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript. Problems

Alex Nichol 101 Dec 16, 2022
Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics

LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot

83 Dec 06, 2022
Code for the Paper: Alexandra Lindt and Emiel Hoogeboom.

Discrete Denoising Flows This repository contains the code for the experiments presented in the paper Discrete Denoising Flows [1]. To give a short ov

Alexandra Lindt 3 Oct 09, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022