Grover is a model for Neural Fake News -- both generation and detectio

Overview

Grover

UPDATE, Sept 17 2019. We got into NeurIPS (camera ready coming soon!) and we've made Grover-Mega publicly available without you needing to fill out the form. You can download it using download_model.py.

(aka, code for Defending Against Neural Fake News)

Grover is a model for Neural Fake News -- both generation and detection. However, it probably can also be used for other generation tasks.

Visit our project page at rowanzellers.com/grover, the AI2 online demo, or read the full paper at arxiv.org/abs/1905.12616.

teaser

What's in this repo?

We are releasing the following:

  • Code for the Grover generator (in lm/). This involves training the model as a language model across fields.
  • Code for the Grover discriminator in discrimination/. Without much changing, you can run Grover as a discriminator to detect Neural Fake News.
  • Code for generating from a Grover model, in sample/.
  • Code for making your own RealNews dataset in realnews/.
  • Model checkpoints freely available online for all of the Grover models. For using the RealNews dataset for research, please submit this form and message me on contact me on Twitter or through email. You will need to use a valid account that has google cloud enabled, otherwise, I won't be able to give you access 😢

Scroll down 👇 for some easy-to-use instructions for setting up Grover to generate news articles.

Setting up your environment

NOTE: If you just care about making your own RealNews dataset, you will need to set up your environment separately just for that, using an AWS machine (see realnews/.)

There are a few ways you can run Grover:

  • Generation mode (inference). This requires a GPU because I wasn't able to get top-p sampling, or caching of transformer hidden states, to work on a TPU.
  • LM Validation mode (perplexity). This could be run on a GPU or a TPU, but I've only tested this with TPU inference.
  • LM Training mode. This requires a large TPU pod.
  • Discrimination mode (training). This requires a TPU pod.
  • Discrimination mode (inference). This could be run on a GPU or a TPU, but I've only tested this with TPU inference.

NOTE: You might be able to get things to work using different hardware. However, it might be a lot of work engineering wise and I don't recommend it if possible. Please don't contact me with requests like this, as there's not much help I can give you.

I used Python3.6 for everything. Usually I set it up using the following commands:

curl -o ~/miniconda.sh -O  https://repo.continuum.io/miniconda/Miniconda3-4.5.4-Linux-x86_64.sh  && \
     chmod +x ~/miniconda.sh && \
     ~/miniconda.sh -b -p ~/conda && \
     rm ~/miniconda.sh && \
     ~/conda/bin/conda install -y python=3.6

Then pip install -r requirements-gpu.txt if you're installing on a GPU, or pip install requirements-tpu.txt for TPU.

Misc notes/tips:

  • If you have a lot of projects on your machine, you might want to use an anaconda environment to handle them all. Use conda create -n grover python=3.6 to create an environment named grover. To enter the environment use source activate grover. To leave use source deactivate.
  • I'm using tensorflow 1.13.1 which requires Cuda 10.0. You'll need to install that from the nvidia website. I usually install it into /usr/local/cuda-10.0/, so you will need to run export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64 so tensorflow knows where to find it.
  • I always have my pythonpath as the root directory. While in the grover directory, run export PYTHONPATH=$(pwd) to set it.

Quickstart: setting up Grover for generation!

  1. Set up your environment. Here's the easy way, assuming anaconda is installed: conda create -y -n grover python=3.6 && source activate grover && pip install -r requirements-gpu.txt
  2. Download the model using python download_model.py base
  3. Now generate: PYTHONPATH=$(pwd) python sample/contextual_generate.py -model_config_fn lm/configs/base.json -model_ckpt models/base/model.ckpt -metadata_fn sample/april2019_set_mini.jsonl -out_fn april2019_set_mini_out.jsonl

Congrats! You can view the generations, conditioned on the domain/headline/date/authors, in april2019_set_mini_out.jsonl.

FAQ: What's the deal with the release of Grover?

Our core position is that it is important to release possibly-dangerous models to researchers. At the same time, we believe Grover-Mega isn't particularly useful to anyone who isn't doing research in this area, particularly as we have an online web demo available and the model is computationally expensive. We previously were a bit stricter and limited initial use of Grover-Mega to researchers. Now that several months have passed since we put the paper on arxiv, and since several other large-scale language models have been publicly released, we figured that there is little harm in fully releasing Grover-Mega.

Bibtex

@inproceedings{zellers2019grover,
    title={Defending Against Neural Fake News},
    author={Zellers, Rowan and Holtzman, Ari and Rashkin, Hannah and Bisk, Yonatan and Farhadi, Ali and Roesner, Franziska and Choi, Yejin},
    booktitle={Advances in Neural Information Processing Systems 32},
    year={2019}
}
Owner
Rowan Zellers
Rowan Zellers
NLP applications using deep learning.

NLP-Natural-Language-Processing NLP applications using deep learning like text generation etc. 1- Poetry Generation: Using a collection of Irish Poem

KASHISH 1 Jan 27, 2022
The tool to make NLP datasets ready to use

chazutsu photo from Kaikado, traditional Japanese chazutsu maker chazutsu is the dataset downloader for NLP. import chazutsu r = chazutsu.data

chakki 243 Dec 29, 2022
An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
Yomichad - a Japanese pop-up dictionary that can display readings and English definitions of Japanese words

Yomichad is a Japanese pop-up dictionary that can display readings and English definitions of Japanese words, kanji, and optionally named entities. It is similar to yomichan, 10ten, and rikaikun in s

Jonas Belouadi 7 Nov 07, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
Python package for performing Entity and Text Matching using Deep Learning.

DeepMatcher DeepMatcher is a Python package for performing entity and text matching using deep learning. It provides built-in neural networks and util

461 Dec 28, 2022
Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2

Google Research Datasets 52 Jun 21, 2022
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition

Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode

David Zurow 22 Dec 29, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

606 Dec 28, 2022
GVT is a generic translation tool for parts of text on the PC screen with Text to Speak functionality.

GVT is a generic translation tool for parts of text on the PC screen with Text to Speech functionality. I wanted to create it because the existing tools that I experimented with did not satisfy me in

Nuked 1 Aug 21, 2022
Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

CIRPLANT This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT) For d

Zheyuan (David) Liu 29 Nov 17, 2022
Maha is a text processing library specially developed to deal with Arabic text.

An Arabic text processing library intended for use in NLP applications Maha is a text processing library specially developed to deal with Arabic text.

Mohammad Al-Fetyani 184 Nov 27, 2022
本插件是pcrjjc插件的重置版,可以独立于后端api运行

pcrjjc2 本插件是pcrjjc重置版,不需要使用其他后端api,但是需要自行配置客户端 本项目基于AGPL v3协议开源,由于项目特殊性,禁止基于本项目的任何商业行为 配置方法 环境需求:.net framework 4.5及以上 jre8 别忘了装jre8 别忘了装jre8 别忘了装jre8

132 Dec 26, 2022
Vad-sli-asr - A Python scripts for a speech processing pipeline with Voice Activity Detection (VAD)

VAD-SLI-ASR Python scripts for a speech processing pipeline with Voice Activity

Dynamics of Language 14 Dec 09, 2022
🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴

PAUSE: Positive and Annealed Unlabeled Sentence Embedding Sentence embedding refers to a set of effective and versatile techniques for converting raw

EQT 21 Dec 15, 2022
Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃

This repository provides a library for efficient training of masked language models (MLM), built with fairseq. We fork fairseq to give researchers mor

Princeton Natural Language Processing 92 Dec 27, 2022
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022
Fuzzy String Matching in Python

FuzzyWuzzy Fuzzy string matching like a boss. It uses Levenshtein Distance to calculate the differences between sequences in a simple-to-use package.

SeatGeek 8.8k Jan 01, 2023
FewCLUE: 为中文NLP定制的小样本学习测评基准

FewCLUE: 为中文NLP定制的小样本学习测评基准

CLUE benchmark 387 Jan 04, 2023