LightGBM + Optuna: no brainer

Overview

AutoLGBM

LightGBM + Optuna: no brainer

  • auto train lightgbm directly from CSV files
  • auto tune lightgbm using optuna
  • auto serve best lightgbm model using fastapi

NOTE: PRs are currently

  • not accepted. If there are issues/problems, please create an issue.
  • accepted. If there are issues/problems, please solve with a PR.

Inspired by Abhishek Thakur's AutoXGB.

Installation

Install using pip

pip install autolgbm

Usage

Training a model using AutoLGBM is a piece of cake. All you need is some tabular data.

Parameters

###############################################################################
### required parameters
###############################################################################

# path to training data
train_filename = "data_samples/binary_classification.csv"

# path to output folder to store artifacts
output = "output"

###############################################################################
### optional parameters
###############################################################################

# path to test data. if specified, the model will be evaluated on the test data
# and test_predictions.csv will be saved to the output folder
# if not specified, only OOF predictions will be saved
# test_filename = "test.csv"
test_filename = None

# task: classification or regression
# if not specified, the task will be inferred automatically
# task = "classification"
# task = "regression"
task = None

# an id column
# if not specified, the id column will be generated automatically with the name `id`
# idx = "id"
idx = None

# target columns are list of strings
# if not specified, the target column be assumed to be named `target`
# and the problem will be treated as one of: binary classification, multiclass classification,
# or single column regression
# targets = ["target"]
# targets = ["target1", "target2"]
targets = ["income"]

# features columns are list of strings
# if not specified, all columns except `id`, `targets` & `kfold` columns will be used
# features = ["col1", "col2"]
features = None

# categorical_features are list of strings
# if not specified, categorical columns will be inferred automatically
# categorical_features = ["col1", "col2"]
categorical_features = None

# use_gpu is boolean
# if not specified, GPU is not used
# use_gpu = True
# use_gpu = False
use_gpu = True

# number of folds to use for cross-validation
# default is 5
num_folds = 5

# random seed for reproducibility
# default is 42
seed = 42

# number of optuna trials to run
# default is 1000
# num_trials = 1000
num_trials = 100

# time_limit for optuna trials in seconds
# if not specified, timeout is not set and all trials are run
# time_limit = None
time_limit = 360

# if fast is set to True, the hyperparameter tuning will use only one fold
# however, the model will be trained on all folds in the end
# to generate OOF predictions and test predictions
# default is False
# fast = False
fast = False

Python API

To train a new model, you can run:

from autolgbm import AutoLGBM


# required parameters:
train_filename = "data_samples/binary_classification.csv"
output = "output"

# optional parameters
test_filename = None
task = None
idx = None
targets = ["income"]
features = None
categorical_features = None
use_gpu = True
num_folds = 5
seed = 42
num_trials = 100
time_limit = 360
fast = False

# Now its time to train the model!
algbm = AutoLGBM(
    train_filename=train_filename,
    output=output,
    test_filename=test_filename,
    task=task,
    idx=idx,
    targets=targets,
    features=features,
    categorical_features=categorical_features,
    use_gpu=use_gpu,
    num_folds=num_folds,
    seed=seed,
    num_trials=num_trials,
    time_limit=time_limit,
    fast=fast,
)
algbm.train()

CLI

Train the model using the autolgbm train command. The parameters are same as above.

autolgbm train \
 --train_filename datasets/30train.csv \
 --output outputs/30days \
 --test_filename datasets/30test.csv \
 --use_gpu

You can also serve the trained model using the autolgbm serve command.

autolgbm serve --model_path outputs/mll --host 0.0.0.0 --debug

To know more about a command, run:

`autolgbm  --help` 
autolgbm train --help


usage: autolgbm  [
   
    ] train [-h] --train_filename TRAIN_FILENAME [--test_filename TEST_FILENAME] --output
                                        OUTPUT [--task {classification,regression}] [--idx IDX] [--targets TARGETS]
                                        [--num_folds NUM_FOLDS] [--features FEATURES] [--use_gpu] [--fast]
                                        [--seed SEED] [--time_limit TIME_LIMIT]

optional arguments:
  -h, --help            show this help message and exit
  --train_filename TRAIN_FILENAME
                        Path to training file
  --test_filename TEST_FILENAME
                        Path to test file
  --output OUTPUT       Path to output directory
  --task {classification,regression}
                        User defined task type
  --idx IDX             ID column
  --targets TARGETS     Target column(s). If there are multiple targets, separate by ';'
  --num_folds NUM_FOLDS
                        Number of folds to use
  --features FEATURES   Features to use, separated by ';'
  --use_gpu             Whether to use GPU for training
  --fast                Whether to use fast mode for tuning params. Only one fold will be used if fast mode is set
  --seed SEED           Random seed
  --time_limit TIME_LIMIT
                        Time limit for optimization

   
Owner
Rishiraj Acharya
Machine Learning Engineer at Dynopii | Teacher (CS106A) at Stanford | Microsoft Student Ambassador, DeepLearning.AI Ambassador | ML Team Lead at Google DSC NSEC
Rishiraj Acharya
Deep Survival Machines - Fully Parametric Survival Regression

Package: dsm Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The under

Carnegie Mellon University Auton Lab 10 Dec 30, 2022
Python Machine Learning Jupyter Notebooks (ML website)

Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also

Tirthajyoti Sarkar 2.6k Jan 03, 2023
Stacked Generalization (Ensemble Learning)

Stacking (stacked generalization) Overview ikki407/stacking - Simple and useful stacking library, written in Python. User can use models of scikit-lea

Ikki Tanaka 192 Dec 23, 2022
AI and Machine Learning with Kubeflow, Amazon EKS, and SageMaker

Data Science on AWS - O'Reilly Book Get the book on Amazon.com Book Outline Quick Start Workshop (4-hours) In this quick start hands-on workshop, you

Data Science on AWS 2.8k Jan 03, 2023
Generate music from midi files using BPE and markov model

Generate music from midi files using BPE and markov model

Aditya Khadilkar 37 Oct 24, 2022
Crunchdao - Python API for the Crunchdao machine learning tournament

Python API for the Crunchdao machine learning tournament Interact with the Crunc

3 Jan 19, 2022
The Ultimate FREE Machine Learning Study Plan

The Ultimate FREE Machine Learning Study Plan

Patrick Loeber (Python Engineer) 2.5k Jan 05, 2023
A Software Framework for Neuromorphic Computing

A Software Framework for Neuromorphic Computing

Lava 338 Dec 26, 2022
SynapseML - an open source library to simplify the creation of scalable machine learning pipelines

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022
Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 05, 2022
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture

monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical alg

RICOS Co. Ltd. 179 Dec 21, 2022
Hierarchical Time Series Forecasting using Prophet

htsprophet Hierarchical Time Series Forecasting using Prophet Credit to Rob J. Hyndman and research partners as much of the code was developed with th

Collin Rooney 131 Dec 02, 2022
Python module for machine learning time series:

seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr

David Burns 536 Dec 29, 2022
This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)

This repo implements a topological SLAM system. Deep Visual Odometry (DF-VO) and Visual Place Recognition are combined to form the topological SLAM system.

Best of Australian Centre for Robotic Vision (ACRV) 32 Jun 23, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processi

Salesforce 2.8k Jan 05, 2023
MLflow App Using React, Hooks, RabbitMQ, FastAPI Server, Celery, Microservices

Katana ML Skipper This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable

Tom Xu 8 Nov 17, 2022
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
Getting Profit and Loss Make Easy From Binance

Getting Profit and Loss Make Easy From Binance I have been in Binance Automated Trading for some time and have generated a lot of transaction records,

17 Dec 21, 2022