PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

Overview

PyTorch Large-Scale Language Model

A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset

Latest Results

  • 39.98 Perplexity after 5 training epochs using LSTM Language Model with Adam Optimizer
  • Trained in ~26 hours using 1 Nvidia V100 GPU (~5.1 hours per epoch) with 2048 batch size (~10.7 GB GPU memory)

Previous Results

  • 46.47 Perplexity after 5 training epochs on a 1-layer, 2048-unit, 256-projection LSTM Language Model [3]
  • Trained for 3 days using 1 Nvidia P100 GPU (~12.5 hours per epoch)
  • Implemented Sampled Softmax and Log-Uniform Sampler functions

GPU Hardware Requirement

Type LM Memory Size GPU
w/o tied weights ~9 GB Nvidia 1080 TI, Nvidia Titan X
w/ tied weights [6] ~7 GB Nvidia 1070 or higher
  • There is an option to tie the word embedding and softmax weight matrices together to save GPU memory.

Hyper-Parameters [3]

Parameter Value
# Epochs 5
Training Batch Size 128
Evaluation Batch Size 1
BPTT 20
Embedding Size 256
Hidden Size 2048
Projection Size 256
Tied Embedding + Softmax False
# Layers 1
Optimizer AdaGrad
Learning Rate 0.10
Gradient Clipping 1.00
Dropout 0.01
Weight-Decay (L2 Penalty) 1e-6

Setup - Torch Data Format

  1. Download Google Billion Word Dataset for Torch - Link
  2. Run "process_gbw.py" on the "train_data.th7" file to create the "train_data.sid" file
  3. Install Cython framework and build Log_Uniform Sampler
  4. Convert Torch data tensors to PyTorch tensor format (Requires Pytorch v0.4.1)

I leverage the GBW data preprocessed for the Torch framework. (See Torch GBW) Each data tensor contains all the words in data partition. The "train_data.sid" file marks the start and end positions for each independent sentence. The preprocessing step and "train_data.sid" file speeds up loading the massive training data.

  • Data Tensors - (test_data, valid_data, train_data, train_small, train_tiny) - (#words x 2) matrix - (sentence id, word id)
  • Sentence ID Tensor - (#sentences x 2) matrix - (start position, sentence length)

Setup - Original Data Format

  1. Download 1-Billion Word Dataset - Link

The Torch Data Format loads the entire dataset at once, so it requires at least 32 GB of memory. The original format partitions the dataset into smaller chunks, but it runs slower.

References

  1. Exploring the Limits of Language Modeling Github
  2. Factorization Tricks for LSTM networks Github
  3. Efficient softmax approximation for GPUs Github
  4. Candidate Sampling
  5. Torch GBW
  6. Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling
Owner
Ryan Spring
A PhD student researching Deep Learning, Locality-Sensitive Hashing, and other large-scale machine learning algorithms.
Ryan Spring
Graph4nlp is the library for the easy use of Graph Neural Networks for NLP

Graph4NLP Graph4NLP is an easy-to-use library for R&D at the intersection of Deep Learning on Graphs and Natural Language Processing (i.e., DLG4NLP).

Graph4AI 1.5k Dec 23, 2022
GPT-2 Model for Leetcode Questions in python

Leetcode using AI 🤖 GPT-2 Model for Leetcode Questions in python New demo here: https://huggingface.co/spaces/gagan3012/project-code-py Note: the Ans

Gagan Bhatia 100 Dec 12, 2022
Machine Learning Course Project, IMDB movie review sentiment analysis by lstm, cnn, and transformer

IMDB Sentiment Analysis This is the final project of Machine Learning Courses in Huazhong University of Science and Technology, School of Artificial I

Daniel 0 Dec 27, 2021
The PyTorch based implementation of continuous integrate-and-fire (CIF) module.

CIF-PyTorch This is a PyTorch based implementation of continuous integrate-and-fire (CIF) module for end-to-end (E2E) automatic speech recognition (AS

Minglun Han 24 Dec 29, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023
Chinese real time voice cloning (VC) and Chinese text to speech (TTS).

Chinese real time voice cloning (VC) and Chinese text to speech (TTS). 好用的中文语音克隆兼中文语音合成系统,包含语音编码器、语音合成器、声码器和可视化模块。

Kuang Dada 6 Nov 08, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 89 Dec 18, 2022
ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in

241 Jan 04, 2023
DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 03, 2023
Fidibo.com comments Sentiment Analyser

Fidibo.com comments Sentiment Analyser Introduction This project first asynchronously grab Fidibo.com books comment data using grabber.py and then sav

Iman Kermani 3 Apr 15, 2022
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
초성 해석기 based on ko-BART

초성 해석기 개요 한국어 초성만으로 이루어진 문장을 입력하면, 완성된 문장을 예측하는 초성 해석기입니다. 초성: ㄴㄴ ㄴㄹ ㅈㅇㅎ 예측 문장: 나는 너를 좋아해 모델 모델은 SKT-AI에서 공개한 Ko-BART를 이용합니다. 데이터 문장 단위로 이루어진 아무 코퍼스나

Dawoon Jung 29 Oct 28, 2022
Rich Prosody Diversity Modelling with Phone-level Mixture Density Network

Phone Level Mixture Density Network for TTS This repo contains pytorch implementation of paper Rich Prosody Diversity Modelling with Phone-level Mixtu

Rishikesh (ऋषिकेश) 42 Dec 13, 2022
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Dec 30, 2022
WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Google Research Datasets 740 Dec 24, 2022
Yomichad - a Japanese pop-up dictionary that can display readings and English definitions of Japanese words

Yomichad is a Japanese pop-up dictionary that can display readings and English definitions of Japanese words, kanji, and optionally named entities. It is similar to yomichan, 10ten, and rikaikun in s

Jonas Belouadi 7 Nov 07, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Meta Research 125 Dec 25, 2022
Visual Automata is a Python 3 library built as a wrapper for Caleb Evans' Automata library to add more visualization features.

Visual Automata Copyright 2021 Lewi Lie Uberg Released under the MIT license Visual Automata is a Python 3 library built as a wrapper for Caleb Evans'

Lewi Uberg 55 Nov 17, 2022