A toolkit for geo ML data processing and model evaluation (fork of solaris)

Overview

lunular

An open source ML toolkit for overhead imagery.

PyPI python version PyPI build docs license

This is a beta version of lunular which may continue to develop. Please report any bugs through issues!


This library is a minimal fork of the solaris project by CosmiQ Works. Currently, the focus of this library is to extract the dataset preprocessing and evaluation methods that do not depend on tensorflow or pytorch, in order to produce a relatively light, framework agnostic package for preparing geospatial ML datasets and evaluating geospatial ML results.

This repository provides the source code for the lunular project, which provides software tools for:

  • Tiling large-format overhead images and vector labels
  • Converting between geospatial raster and vector formats and machine learning-compatible formats
  • Evaluating performance of deep learning model predictions, including semantic and instance segmentation, object detection, and related tasks

Documentation

The full documentation for lunular can be found at https://lunular.readthedocs.io, and includes:

  • A summary of lunular
  • Installation instructions
  • API Documentation
  • Tutorials for common uses

The documentation is still being improved, so if a tutorial you need isn't there yet, check back soon or post an issue!

Installation Instructions

coming soon: One-command installation from conda-forge.

We recommend creating a conda environment with the dependencies defined in environment.yml before installing lunular. After cloning the repository:

cd lunular

If you're installing on a system with GPU access:

conda env create -n lunular -f environment-gpu.yml

Otherwise:

conda env create -n lunular -f environment.yml

Finally, regardless of your installation environment:

conda activate lunular
pip install .

pip

The package also exists on PyPI, but note that some of the dependencies, specifically rtree and gdal, are challenging to install without anaconda. We therefore recommend installing at least those dependencies using conda before installing from PyPI.

conda install -c conda-forge rtree gdal=2.4.1
pip install lunular

If you don't want to use conda, you can install libspatialindex, then pip install rtree. Installing GDAL without conda can be very difficult and approaches vary dramatically depending upon the build environment and version, but the rasterio install documentation provides OS-specific install instructions. Simply follow their install instructions, replacing pip install rasterio with pip install lunular at the end.

Dependencies

All dependencies can be found in the requirements file ./requirements.txt or environment.yml

License

See LICENSE.

Owner
Ryan Avery
Ryan Avery
Scikit-Garden or skgarden is a garden for Scikit-Learn compatible decision trees and forests.

Scikit-Garden or skgarden (pronounced as skarden) is a garden for Scikit-Learn compatible decision trees and forests.

260 Dec 21, 2022
Warren - Stock Price Predictor

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

Kumar Nityan Suman 153 Jan 03, 2023
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Microsoft 43.4k Jan 04, 2023
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022
Predict the income for each percentile of the population (Python) - FRENCH

05.income-prediction Predict the income for each percentile of the population (Python) - FRENCH Effectuez une prédiction de revenus Prérequis Pour ce

1 Feb 13, 2022
Module for statistical learning, with a particular emphasis on time-dependent modelling

Operating system Build Status Linux/Mac Windows tick tick is a Python 3 module for statistical learning, with a particular emphasis on time-dependent

X - Data Science Initiative 410 Dec 14, 2022
MLFlow in a Dockercontainer based on Azurite and Postgres

mlflow-azurite-postgres docker This is a MLFLow image which works with a postgres DB and a local Azure Blob Storage Instance (Azurite). This image is

2 May 29, 2022
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validat

The Apache Software Foundation 121 Dec 28, 2022
A linear regression model for house price prediction

Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install

ShawnWang 1 Nov 29, 2021
scikit-learn is a python module for machine learning built on top of numpy / scipy

About scikit-learn is a python module for machine learning built on top of numpy / scipy. The purpose of the scikit-learn-tutorial subproject is to le

Gael Varoquaux 122 Dec 12, 2022
LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms Based on the work by Smith et al. (2021) Query

5 Aug 06, 2022
Python module for machine learning time series:

seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr

David Burns 536 Dec 29, 2022
A simple guide to MLOps through ZenML and its various integrations.

ZenBytes Join our Slack Community and become part of the ZenML family Give the main ZenML repo a GitHub star to show your love ZenBytes is a series of

ZenML 127 Dec 27, 2022
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
A toolkit for geo ML data processing and model evaluation (fork of solaris)

An open source ML toolkit for overhead imagery. This is a beta version of lunular which may continue to develop. Please report any bugs through issues

Ryan Avery 4 Nov 04, 2021
Apple-voice-recognition - Machine Learning

Apple-voice-recognition Machine Learning How does Siri work? Siri is based on large-scale Machine Learning systems that employ many aspects of data sc

Harshith VH 1 Oct 22, 2021