Create a low powered, renewable generation forecast display with a Raspberry Pi Zero & Inky wHAT.

Overview

GB Renewable Forecast Display

Screenshot Screenshot Screenshot Screenshot

This Raspberry Pi powered eInk display aims to give you a quick way to time your home energy usage to help balance the grid, reduce carbon emissions, and if you're an agile tariff user, save money.

The project takes the same approach as shouldibake.com and the Baking Forecast GB to give you quick visual aid when making that decision, showing you when renewable generation is above or below 33%.

Data is provided by the National Grid's carbon intensity api and Octopus Energy's Agile tariff pricing API.

Install and setup

Following the steps in this repository requires minimal input - all the required Inky libraries & code to display the screens is downloaded and setup on your pi when you run the install commands. You will need an SSH client in order to connect to the pi, but all of the SSH commands you need are listed on this page.

  • time required: ~30mins
  • cost of the components: ~£70

Components

  1. Raspberry Pi Zero soldered (~£14) (piehut | pimoroni)
  2. Micro SD card (~£7) (piehut | pimoroni)
  3. Inky wHAT (ePaper/eInk/EPD) - Black/White (£45) (piehut | pimoroni)
  4. Power supply - micro USB connection (piehut | pimoroni - or use an existing cable)
  5. Case (see notes below)

Raspberry Pi Setup

I use a "headless" Raspberry Pi setup to install all the dependencies; we configure the wifi settings prior to powering on the Pi & enable SSH by default, this mean we avoid having to connect a display or a keyboard.

1. Flash SD card with Raspberry Pi OS lite (no desktop)

  • Use Raspberry Pi Imager
  • Select SD card
  • Choose "Raspberry Pi OS (other)" > "Raspberry Pi OS Lite (32-bit)" (we dont require a GUI desktop)
  • Select write & wait for the OS to be written to the SD card.

2. Configure Wifi & Enable SSH

  • Once the Rapsberry Pi OS image has been saved to the SD card, open a file window so that you can view the contents of the SD card's 'boot' folder
  • Create a new file wpa_supplicant.conf in the root of the boot folder & add the following, replacing the relevant sections with the SSID and password of your wifi network
  ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
  network={
    ssid="YOUR_SSID"
    psk="YOUR_WIFI_PASSWORD"
    key_mgmt=WPA-PSK
  }

Example file: conf/wpa_supplicant.conf

  • Finally create an empty file called 'ssh' (without a file extension) in the boot directory, this will enable SSH by default when you first power on the pi

3. Insert the SD into the Pi, install the Pi into the Inky display & boot

  • Insert the SD card into the Raspberry Pi
  • Install the Raspberry Pi into the back of the Inky display - align the Pi, with the 40 GPIO pins pointing down, to the top right hand corner of the back of the Inky display and gently push the the GPIO pins into the black connector. See an image of the reverse of display.
  • Power on the Pi & wait for ~2 minutes whilst the operating system boots up.
  • At this point you'll need to create an SSH connection to the Pi from your laptop/desktop. You can read more about SSH (Secure Shell) & find a client for your machine here
  • If this is the only Raspberry Pi on your network you'll be able to access the Pi using the device's hostname with following SSH command
ssh [email protected]
# password is 'raspberry'

otherwise, you will need to find the IP of your Pi via your local network router then start a SSH session using

ssh pi@[IP ADDRESS]
# password is 'raspberry'
  • Once your ssh connetion has been established the first thing you should do is update the password - the Pi OS ships with a default password, and it's always best to change this before going any further. To change your password run:
passwd

Then enter and confirm your new password

4. Run the install script

  • In your SSH terminal, ensure you're first in the pi user's home directory by running cd ~/
  • Install the dependencies for both the Inky display & the api/drawing libraries by running the following command

curl https://raw.githubusercontent.com/openbook/shouldi-eink-display/main/setup/install.sh | bash Note this command runs the install file found within this repository, so you can check exactly what's being installed if you need to.

  • When prompted enter Y to install the required inky libraries
  • When prompted 'Do you wish to perform a full install?' enter N
  • Once the install script has finished, the Pi will be rebooted to ensure all the libraries are correctly loaded now that the inky display is connected.
  • Once the pi has rebooted, if everything has been installed correctly, the Inky screen should update to display the default 'combined' screen.

5. SSH back in to the Pi & set the display configuration

  • First SSH back into the pi
  • By default the 'combined' forecast and current generation mix is displayed. Full info on each of the screens is available here. You can update the display by changing the values found within the 'config.ini' that was downloaded as part of the setup:
  • Using a text editor update the contents of the file found at /home/pi/shouldi-eink-display/config.ini
  • Update the display = combined line choosing one of the following options:
    • combined - renewable forecast plus current generation mix
    • forecast - the full "should i bake" forecast
    • agile - agile tariff hourly prices for the current day
    • generation - current renable generation mix for a local area
  • If selecting "agile" then the postcode and placename should be changed from the current values in the same file. Note postcodes should be added using the first half only (e.g. for SW1A 0AA use SW1A)
  • see '#displays' for notes on each display screen

6. Setup the web interface

Screenshot

You can also setup and run a simple web form which will allow you to switch the current screen display using a browser.

  • still using the SSH session, make sure you are in the project root folder cd ~/shouldi-eink-display
  • run ./setup/install-web.sh this will setup an nginx webserver and serve a simple flask based webapp that will allow you to update the config.ini file.
  • Once the install script has finished, it should confirm the IP address of your Pi - you can then open that IP address in a browser to access the web interface shown above

7. 🎉 Done

Hopefully everything should be setup and working ok.

Your display is set to update automatically at 5 & 35 minutes past each hour.

Screens

Screen Config.ini name Description
Screenshot combined Combined current generation mix + renewable forecast

Now
how much of the current electricity supply, coming from the National Grid, is being generated from renewable sources (wind, hydro & solar)

Forecast
for the next (up to) 4 days, which slots (morning, afternoon, evening or night) are forecasted to have renewable generation higher than 33%
- where there's a tick, generation is forecasted to be greater than 33%
- where there's a cross, generation is forecasted to be lower than 33%, avoid doing any activities at home which consume a lot of electricity during these times if you can
- where the tick or cross is underlined - this shows the period during the day which is forecasted to have the highest renewable generation. Try to plan your high demand activities for these time.
Screenshot agile (Octopus) Agile Tariff pricing

Displays the cost p/kWh (pence per kilowatt hour) for each hour over the current day.
See the full documentation here for more information

Note: the data retrieved from the Octopus API is for the London 'C' region by default. To change region, first find the alphabetical region (GSP Group) Id then update the region value in the config.ini file (excluding any underscores)
Screenshot forecast Baking forecast shouldibake.com @baking4cast

Right now, Bake!/Can baking wait?
tells you whether the current renewable generation level is higher than 33%

Forecast
for the next (up to) 4 days, which slots (morning, afternoon, evening or night) are forecasted to have renewable generation higher than 33%
- where there's a tick, generation is forecasted to be greater than 33%
- where there's a cross, generation is forecasted to be lower than 33%, avoid doing any activities at home which consume a lot of electricity during these times if you can
- where the tick or cross is underlined - this shows the period during the day which is forecasted to have the highest renewable generation. Try to plan your high demand activities for these time.
Screenshot generation Local generation for your region

Using a postcode supplied in the config.ini file, this display shows the current generation mix specific to your region.

Case

Make your own

Screenshot Screenshot

I created a simple frame using some pine stripwood (6x25mm), which was then treated with danish oil. This works well and with a small cut out for the USB power cable sits flush against a wall when fixed with a nail.

Modeled and 3d printed LargeCover enclosure by Printminion

This is a great professional looking case that's ready to buy and simple to install.

Note, unless you are going to solder the pi to the inky manually then you'll need the 'enclosure' + 'large cover'.

To do

  • Add a physical button to switch between displays
  • Add error handling for all outgoing requests
  • Image uploader for custom screen of when generation is high and low
  • Move carbonintensitylib to pandas for consistency and to improve code qualityŒ
  • Add more in depth view for agile pricing - show current, min and max prices
  • Add a battery pack & power management
Owner
Andy Brace
Andy Brace
Repo for the esp32s2 version of the Wi-Fi Nugget

Repo for the esp32s2 version of the Wi-Fi Nugget

HakCat 30 Nov 05, 2022
Smart EQ connect - Custom Integration for Home Assistant

Smart EQ Connect platform as a Custom Component for Home Assistant.

Rene Nulsch 2 Jan 04, 2022
DNP3 Stalker is a project to analyze and interact with DNP3 devices

DNP3 Stalker Purpose DNP3 Stalker is a project to analyze and interact with DNP3

Cutaway Security, LLC. 2 Feb 10, 2022
Programming of Robotics Systems course at the University of Aveiro, Portugal, 2021-2022.

Programação de Sistemas Robóticos Miguel Riem Oliveira Universidade de Aveiro 2021-2022 Projeto AtlasCar Projecto RACE IROS 2014 AtlasCar2 ATOM IROS 2

Miguel Riem de Oliveira 22 Jul 13, 2022
OpenStickFirmware is open source software designed to handle any and all tasks required in a custom Fight Stick

OpenStickFirmware is open source software designed to handle any and all tasks required in a custom Fight Stick. It can handle being the brains of your entire stick, or just handling the bells and wh

Sleep Unit 23 Nov 24, 2022
Uses the Duke Energy Gateway to import near real time energy usage into Home Assistant

Duke Energy Gateway This is a custom integration for Home Assistant. It pulls near-real-time energy usage from Duke Energy via the Duke Energy Gateway

Michael Meli 28 Dec 23, 2022
Raspberry Pi Pico and LoRaWAN from CircuitPython

Raspberry Pi Pico and LoRaWAN from CircuitPython Enable LoRaWAN communications on your Raspberry Pi Pico or any RP2040-based board using CircuitPython

Alasdair Allan 15 Oct 08, 2022
Raspberry Pi Power Button - Wake/Power Off/Restart(Double Press)

Control Raspberry pi with physically attached button. Wake, Power Off, and Restart (Double Press) . Python3 script runs as a service with easy installation.

Stas Yakobov 16 Oct 22, 2022
For use with an 8-bit parallel TFT touchscreen using micropython

ILI9341-parallel-TFT-driver-for-micropython For use with an 8-bit parallel TFT touchscreen using micropython. Many thanks to prenticedavid and his MCU

3 Aug 02, 2022
Hardware-accelerated ROS2 packages for camera image processing.

Isaac ROS Image Pipeline Overview This metapackage offers similar functionality as the standard, CPU-based image_pipeline metapackage, but does so by

NVIDIA Isaac ROS 52 Dec 15, 2022
Open source home automation that puts local control and privacy first.

Home Assistant Open source home automation that puts local control and privacy first. Powered by a worldwide community of tinkerers and DIY enthusiast

Home Assistant 57k Jan 01, 2023
Cascade Drone Swarm Physical Demonstration Project

Cascade Drone Swarm Physical Demonstration Project Table of Contents About The Project Built With Getting Started Prerequisites Installation About The

3 Aug 24, 2022
Pihole-eink-display - A simple Python script to display PiHole statistics on an eInk Display

Pihole-eink-display - A simple Python script to display PiHole statistics on an eInk Display

Mark McIntyre 64 Oct 11, 2022
Segger Embedded Studio project for building & debugging Flipper Zero firmware.

Segger Embedded Studio project for Flipper Zero firmware Установка Добавить данный репозиторий в качестве сабмодуля в корень локальной копии репозитор

25 Dec 28, 2022
Python information display framework aimed at e-ink devices

My display, using a Raspberry Pi Zero W and Waveshare 6" e-paper hat infodisplay Modular information display framework aimed at e-ink devices. Built u

Niek Blankers 3 Apr 08, 2022
Activate Numpad inside the touchpad with top right corner switch or F8 key

This is a python service which enables switching between numpad and touchpad for the Asus UX433. It may work for other models.

Mohamed Badaoui 230 Jan 08, 2023
Event-based hardware simulation framework

An event-based multi-device simulation framework providing configuration and orchestration of complex multi-device simulations.

Diamond Light Source Controls Group 3 Feb 01, 2022
Home Assistant component to handle key atom

KeyAtome Home Assistant component to handle key atom, a Linky-compatible device made by Total/Direct-Energie. Installation Either use HACS (default),

18 Dec 21, 2022
ModbusTCP2MQTT - Sungrow & SMA Solar Inverter addon for Home Assistant

ModbusTCP2MQTT Sungrow & SMA Solar Inverter addon for Home Assistant This addon will connect directly to your Inverter using Modbus TCP. Support model

Teny Smart 40 Dec 21, 2022
MPY tool - manage files on devices running MicroPython

mpytool MPY tool - manage files on devices running MicroPython It is an alternative to ampy Target of this project is to make more clean code, faster,

Pavel Revak 5 Aug 17, 2022