Create a low powered, renewable generation forecast display with a Raspberry Pi Zero & Inky wHAT.

Overview

GB Renewable Forecast Display

Screenshot Screenshot Screenshot Screenshot

This Raspberry Pi powered eInk display aims to give you a quick way to time your home energy usage to help balance the grid, reduce carbon emissions, and if you're an agile tariff user, save money.

The project takes the same approach as shouldibake.com and the Baking Forecast GB to give you quick visual aid when making that decision, showing you when renewable generation is above or below 33%.

Data is provided by the National Grid's carbon intensity api and Octopus Energy's Agile tariff pricing API.

Install and setup

Following the steps in this repository requires minimal input - all the required Inky libraries & code to display the screens is downloaded and setup on your pi when you run the install commands. You will need an SSH client in order to connect to the pi, but all of the SSH commands you need are listed on this page.

  • time required: ~30mins
  • cost of the components: ~£70

Components

  1. Raspberry Pi Zero soldered (~£14) (piehut | pimoroni)
  2. Micro SD card (~£7) (piehut | pimoroni)
  3. Inky wHAT (ePaper/eInk/EPD) - Black/White (£45) (piehut | pimoroni)
  4. Power supply - micro USB connection (piehut | pimoroni - or use an existing cable)
  5. Case (see notes below)

Raspberry Pi Setup

I use a "headless" Raspberry Pi setup to install all the dependencies; we configure the wifi settings prior to powering on the Pi & enable SSH by default, this mean we avoid having to connect a display or a keyboard.

1. Flash SD card with Raspberry Pi OS lite (no desktop)

  • Use Raspberry Pi Imager
  • Select SD card
  • Choose "Raspberry Pi OS (other)" > "Raspberry Pi OS Lite (32-bit)" (we dont require a GUI desktop)
  • Select write & wait for the OS to be written to the SD card.

2. Configure Wifi & Enable SSH

  • Once the Rapsberry Pi OS image has been saved to the SD card, open a file window so that you can view the contents of the SD card's 'boot' folder
  • Create a new file wpa_supplicant.conf in the root of the boot folder & add the following, replacing the relevant sections with the SSID and password of your wifi network
  ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
  network={
    ssid="YOUR_SSID"
    psk="YOUR_WIFI_PASSWORD"
    key_mgmt=WPA-PSK
  }

Example file: conf/wpa_supplicant.conf

  • Finally create an empty file called 'ssh' (without a file extension) in the boot directory, this will enable SSH by default when you first power on the pi

3. Insert the SD into the Pi, install the Pi into the Inky display & boot

  • Insert the SD card into the Raspberry Pi
  • Install the Raspberry Pi into the back of the Inky display - align the Pi, with the 40 GPIO pins pointing down, to the top right hand corner of the back of the Inky display and gently push the the GPIO pins into the black connector. See an image of the reverse of display.
  • Power on the Pi & wait for ~2 minutes whilst the operating system boots up.
  • At this point you'll need to create an SSH connection to the Pi from your laptop/desktop. You can read more about SSH (Secure Shell) & find a client for your machine here
  • If this is the only Raspberry Pi on your network you'll be able to access the Pi using the device's hostname with following SSH command
ssh [email protected]
# password is 'raspberry'

otherwise, you will need to find the IP of your Pi via your local network router then start a SSH session using

ssh pi@[IP ADDRESS]
# password is 'raspberry'
  • Once your ssh connetion has been established the first thing you should do is update the password - the Pi OS ships with a default password, and it's always best to change this before going any further. To change your password run:
passwd

Then enter and confirm your new password

4. Run the install script

  • In your SSH terminal, ensure you're first in the pi user's home directory by running cd ~/
  • Install the dependencies for both the Inky display & the api/drawing libraries by running the following command

curl https://raw.githubusercontent.com/openbook/shouldi-eink-display/main/setup/install.sh | bash Note this command runs the install file found within this repository, so you can check exactly what's being installed if you need to.

  • When prompted enter Y to install the required inky libraries
  • When prompted 'Do you wish to perform a full install?' enter N
  • Once the install script has finished, the Pi will be rebooted to ensure all the libraries are correctly loaded now that the inky display is connected.
  • Once the pi has rebooted, if everything has been installed correctly, the Inky screen should update to display the default 'combined' screen.

5. SSH back in to the Pi & set the display configuration

  • First SSH back into the pi
  • By default the 'combined' forecast and current generation mix is displayed. Full info on each of the screens is available here. You can update the display by changing the values found within the 'config.ini' that was downloaded as part of the setup:
  • Using a text editor update the contents of the file found at /home/pi/shouldi-eink-display/config.ini
  • Update the display = combined line choosing one of the following options:
    • combined - renewable forecast plus current generation mix
    • forecast - the full "should i bake" forecast
    • agile - agile tariff hourly prices for the current day
    • generation - current renable generation mix for a local area
  • If selecting "agile" then the postcode and placename should be changed from the current values in the same file. Note postcodes should be added using the first half only (e.g. for SW1A 0AA use SW1A)
  • see '#displays' for notes on each display screen

6. Setup the web interface

Screenshot

You can also setup and run a simple web form which will allow you to switch the current screen display using a browser.

  • still using the SSH session, make sure you are in the project root folder cd ~/shouldi-eink-display
  • run ./setup/install-web.sh this will setup an nginx webserver and serve a simple flask based webapp that will allow you to update the config.ini file.
  • Once the install script has finished, it should confirm the IP address of your Pi - you can then open that IP address in a browser to access the web interface shown above

7. 🎉 Done

Hopefully everything should be setup and working ok.

Your display is set to update automatically at 5 & 35 minutes past each hour.

Screens

Screen Config.ini name Description
Screenshot combined Combined current generation mix + renewable forecast

Now
how much of the current electricity supply, coming from the National Grid, is being generated from renewable sources (wind, hydro & solar)

Forecast
for the next (up to) 4 days, which slots (morning, afternoon, evening or night) are forecasted to have renewable generation higher than 33%
- where there's a tick, generation is forecasted to be greater than 33%
- where there's a cross, generation is forecasted to be lower than 33%, avoid doing any activities at home which consume a lot of electricity during these times if you can
- where the tick or cross is underlined - this shows the period during the day which is forecasted to have the highest renewable generation. Try to plan your high demand activities for these time.
Screenshot agile (Octopus) Agile Tariff pricing

Displays the cost p/kWh (pence per kilowatt hour) for each hour over the current day.
See the full documentation here for more information

Note: the data retrieved from the Octopus API is for the London 'C' region by default. To change region, first find the alphabetical region (GSP Group) Id then update the region value in the config.ini file (excluding any underscores)
Screenshot forecast Baking forecast shouldibake.com @baking4cast

Right now, Bake!/Can baking wait?
tells you whether the current renewable generation level is higher than 33%

Forecast
for the next (up to) 4 days, which slots (morning, afternoon, evening or night) are forecasted to have renewable generation higher than 33%
- where there's a tick, generation is forecasted to be greater than 33%
- where there's a cross, generation is forecasted to be lower than 33%, avoid doing any activities at home which consume a lot of electricity during these times if you can
- where the tick or cross is underlined - this shows the period during the day which is forecasted to have the highest renewable generation. Try to plan your high demand activities for these time.
Screenshot generation Local generation for your region

Using a postcode supplied in the config.ini file, this display shows the current generation mix specific to your region.

Case

Make your own

Screenshot Screenshot

I created a simple frame using some pine stripwood (6x25mm), which was then treated with danish oil. This works well and with a small cut out for the USB power cable sits flush against a wall when fixed with a nail.

Modeled and 3d printed LargeCover enclosure by Printminion

This is a great professional looking case that's ready to buy and simple to install.

Note, unless you are going to solder the pi to the inky manually then you'll need the 'enclosure' + 'large cover'.

To do

  • Add a physical button to switch between displays
  • Add error handling for all outgoing requests
  • Image uploader for custom screen of when generation is high and low
  • Move carbonintensitylib to pandas for consistency and to improve code qualityŒ
  • Add more in depth view for agile pricing - show current, min and max prices
  • Add a battery pack & power management
Owner
Andy Brace
Andy Brace
I made this so I can control my Tapo L510 light bulb and Govee H6159 light strip using the PyP100 module and the Govee public API

TAPO-And-Govee-Controller I made this so I can control my Tapo L510 light bulb and Govee H6159 light strip using the PyP100 module and the Govee publi

James Westhead 0 Nov 23, 2021
A python script to poll RPi GPIO pins and subscribe and publish their state via MQTT

MQTT-GPIO A python script to poll RPi GPIO pins and subscribe and publish their state via MQTT using TLS. This script is short and meant to be edited

23 Oct 12, 2021
SALUS THERMOSTAT Custom component for Home-Assistant

Home-Assistant Custom Components Custom Components for Home-Assistant (http://www.home-assistant.io) Salus Thermostat Climate Component My device is R

21 Dec 18, 2022
OpenStickFirmware is open source software designed to handle any and all tasks required in a custom Fight Stick

OpenStickFirmware is open source software designed to handle any and all tasks required in a custom Fight Stick. It can handle being the brains of your entire stick, or just handling the bells and wh

Sleep Unit 23 Nov 24, 2022
Code reimplementation of some papers published in SAIL-Lab

SAIL SAIL-Lab统一代码库 Motivation 创建这个项目的动机最早来源于实验室组内成员相互Debug代码的时候遇到的麻烦。

Jianwen Chen 8 Nov 15, 2022
A modular sequencer based on Pi Pico & EuroPi

PicoSequencer A modular sequencer based on Pi Pico & EuroPi by Zeno Van Moerkerke / Keurslager Kurt For now it is 'only' a trigger sequencer, but I si

5 Oct 27, 2022
Open source home automation that puts local control and privacy first.

Home Assistant Open source home automation that puts local control and privacy first. Powered by a worldwide community of tinkerers and DIY enthusiast

Home Assistant 57k Jan 01, 2023
Claussoft Personal Digital Assistant

Claussoft Personal Digital Assistant Install on Linux $ sudo apt update $ sudo apt install espeak ffmpeg libespeak1 portaudio19-dev $ pip install -r r

Christian Clauss 3 Dec 14, 2022
Using a raspberry pi, we listen to the coffee machine and count the number of coffee consumption

A typical datarootsian consumes high-quality fresh coffee in their office environment. The board of dataroots had a very critical decision by the end of 2021-Q2 regarding coffee consumption.

dataroots 51 Nov 21, 2022
A script for performing OTA update over BLE on ESP32

A script for performing OTA update over BLE on ESP32

Felix Biego 18 Dec 15, 2022
Extremely simple PyBadge examples to demonstrate different aspects of CircuitPython using PyBadge hardware.

BeginnerPyBadge I purchased a PyBadge recently. I'm new to hardware. I was surprised how hard it was to find easy examples demonstrating how different

Rubini LaForest 2 Oct 21, 2021
How to configure IOMMU device for nested Proxmox hypervisor (PVE) VM - PCIe Passthrough

Configuring PCIe Passthrough for Nested Virtualization on Proxmox Summary: If you are running bare-metal L0 (level 0) Proxmox (PVE) hypervisor with ne

Travis Johnson 6 Aug 30, 2022
Resmed_myair_sensors - This is a Home Assistant custom component to pull daily CPAP data from ResMed's myAir service using an undocumented API

resmed_myair This component will set up the following platforms. Platform Description sensor Show info from the myAir API. Installation Using the tool

Preston Tamkin 17 Dec 29, 2022
Simples Keylogger para Windows com um autoboot implementado no sistema

MKW Keylogger Keylogger simples para Windos com um autoboot implementado no sistema, o malware irá capturar pressionamentos de tecla e armazená-lo em

3 Jul 03, 2021
A PYTHON Library for Controlling Motors using SOLO Motor Controllers with RASPBERRY PI, Linux, windows, and more!

A PYTHON Library for Controlling Motors using SOLO Motor Controllers with RASPBERRY PI, Linux, windows, and more!

SOLO Motor Controllers 3 Apr 29, 2022
A python script for macOS to enable scrolling with the 3M ergonomic mouse EM500GPS in any application.

A python script for macOS to enable scrolling with the 3M ergonomic mouse EM500GPS in any application.

3 Feb 19, 2022
Hourglass on the pi pico using circuitpython

hourglass-on-pico "Hourglass" on the raspberry pi pico using circuitpython circuitpython version 7.0.0 Components used: Raspberry Pi Pico ADXL345 acce

4 Jul 18, 2022
Setup DevTerm to be a cool non-GUI device

DevTerm hobby project I bought this amazing device: DevTerm A-0604. It has a beefy ARM processor, runs a custom version of Armbian, embraces Open Sour

Alex Shteinikov 9 Nov 17, 2022
A Python program that makes it easy to manage modules on a CircuitPython device!

CircuitPython-Bundle-Manager-v2 A Python program that makes it easy to manage modules on a CircuitPython device! The CircuitPython Bundle Manager v2 i

Ckyiu 1 Dec 18, 2021
This repo uses a stereo camera and gray-code-based structured light to realize dense 3D reconstruction.

Structured-light-stereo This repo uses a stereo camera and gray-code-based structured light to realize dense 3D reconstruction. . How to use: STEP 1:

FEI 20 Dec 31, 2022