An adaptable Snakemake workflow which uses GATKs best practice recommendations to perform germline mutation calling starting with BAM files

Overview

Germline Mutation Calling

This Snakemake workflow follows the GATK best-practice recommandations to call small germline variants.

The pipeline requires as inputs aligned BAM files (e.g. with BWA) where the duplicates are already marked (e.g. with Picard or sambamba). It then performed Base Quality Score Recalibration and joint genotyping of multiple samples, which is automatically parallized over user defined intervals (for examples see intervals.txt) and chromosomes.

Filtering is performed using GATKs state-of-the-art Variant Quality Score Recalibration

At the end of the worklow, the Variant Effect Predictor is used to annotate the identified germline mutations.

A high level overview of the performed steps can be seen below:

DAG

As seen by the execution graph, an arbitrary number of samples/BAM files can be processed in parallel up to the joint variant calling.

Installation

Required tools:

The majority of the listed tools can be quite easily installed with conda which is recommanded.

Usage

First, modify the config_wgs.yaml and resources.yaml files. Both files contain detailed description what is expected. The config_wgs.yaml also contains links to some reference resources. Be careful, they are all specific for the GRCh37/hg19/b37 genome assembly.

After setting up all the config files and installing all tools, you can simply run:

snakemake --latency-wait 300 -j 5 --cluster "sbatch --mem={resources.mem_mb} --time {resources.runtime_min} --cpus-per-task {threads} --job-name={rule}.%j --output snakemake_cluster_submit_log/{rule}.%j.out --mail-type=FAIL"

This assumes that the cluster you are using is running SLURM. If this is not the case, you have to adjust the command after --cluster. The log information of each job will be safed in the snakemake_cluster_submit_log directory. This directory will not be created automatically.

-j specifies the number of jobs/rules should be submitted in parallel.

I recommand running this command in a detached session with tmux or screen.

Output

Below is the output of the tree command, after the workflow has finished for one patient H005-00ML. Usually you would include many patients simultaneously (>50). This is just to illustrate the created output files.

.
├── cohort
│ ├── benchmark
│ │ ├── ApplyVQSR_indel.txt
│ │ ├── ApplyVQSR_snp.txt
│ │ ├── CombineGVCFs.txt
│ │ ├── GenotypeGVCFs.txt
│ │ ├── MergeCohortVCFs.txt
│ │ ├── SelectVariants.txt
│ │ ├── VEP.txt
│ │ ├── VQSR_indel.txt
│ │ └── VQSR_snp.txt
│ ├── cohort.recalibrated.pass.vep.vcf.gz
│ ├── cohort.recalibrated.pass.vep.vcf.gz_summary.html
│ ├── cohort.recalibrated.vcf.gz
│ ├── cohort.recalibrated.vcf.gz.tbi
│ └── logs
│     ├── ApplyVQSR_indel.out
│     ├── ApplyVQSR_snp.out
│     ├── CombineGVCFs
│     ├── CombineGVCFs.1.out
│     ├── CombineGVCFs.2.out
│     ├── ...
│     ├── ...
│     ├── CombineGVCFs.Y.out
│     ├── GenotypeGVCFs.1.out
│     ├── GenotypeGVCFs.2.out
│     ├── ...
│     ├── ...
│     ├── GenotypeGVCFs.Y.out
│     ├── MakeSitesOnly.out
│     ├── MergeCohortVCFs.out
│     ├── SelectVariants.err
│     ├── VEP.out
│     ├── VQSR_indel.out
│     └── VQSR_snp.out
├── config
│ ├── config_wgs.yaml
│ └── resources.yaml
├── H005-00ML
│ ├── benchmark
│ │ ├── ApplyBQSR.txt
│ │ ├── BaseRecalibrator.txt
│ │ ├── GatherBQSRReports.txt
│ │ ├── GatherRecalBamFiles.txt
│ │ ├── HaplotypeCaller.txt
│ │ ├── IndexBam.txt
│ │ ├── MergeHaplotypeCaller.txt
│ │ └── SortBam.txt
│ ├── H005-00ML.germline.merged.g.vcf.gz
│ ├── H005-00ML.germline.merged.g.vcf.gz.tbi
│ └── logs
│     ├── ApplyBQSR
│     ├── ApplyBQSR.0000-scattered.interval_list.out
│     ├── ApplyBQSR.0001-scattered.interval_list.out
│     ├── ...
│     ├── ...
│     ├── ApplyBQSR.0049-scattered.interval_list.out
│     ├── BaseRecalibrator
│     ├── BaseRecalibrator.0000-scattered.interval_list.out
│     ├── BaseRecalibrator.0001-scattered.interval_list.out
│     ├── ...
│     ├── ...
│     ├── BaseRecalibrator.0049-scattered.interval_list.out
│     ├── GatherBQSRReports.out
│     ├── GatherRecalBamFiles.out
│     ├── HaplotypeCaller
│     ├── HaplotypeCaller.0000-scattered.interval_list.out
│     ├── HaplotypeCaller.0001-scattered.interval_list.out
│     ├── ...
│     ├── ...
│     ├── HaplotypeCaller.0049-scattered.interval_list.out
│     ├── IndexBam.out
│     ├── MergeHaplotypeCaller.out
│     └── SortBam.out
├── rules
│ ├── BaseQualityScoreRecalibration.smk
│ ├── JointGenotyping.smk
│ ├── VEP.smk
│ └── VQSR.smk
├── Snakefile
├── snakemake_cluster_submit_log
│ ├── ApplyBQSR.24720887.out
│ ├── ApplyVQSR_snp.24777265.out
│ ├── BaseRecalibrator.24710227.out
│ ├── CombineGVCFs.24772984.out
│ ├── GatherBQSRReports.24715726.out
│ ├── GatherRecalBamFiles.24722478.out
│ ├── GenotypeGVCFs.24773026.out
│ ├── HaplotypeCaller.24769848.out
│ ├── IndexBam.24768728.out
│ ├── MergeCohortVCFs.24776018.out
│ ├── MergeHaplotypeCaller.24772183.out
│ ├── SelectVariants.24777733.out
│ ├── SortBam.24768066.out
│ ├── VEP.24777739.out
│ ├── VQSR_indel.24776035.out
│ └── VQSR_snp.24776036.out

For each analyzed patient, a seperate directory gets created. Along with the patient specific gvcf file, this directory contains log files for all the processing steps that were performed for that patient (log directory) as well as benchmarks for each rule, e.g. how long the step took or how much CPU/RAM was used (benchmark directory).

The cohort directory contains the multi-sample VCF file, which gets created after performing the joint variant calling. The cohort.recalibrated.vcf.gz is the product of GATKs Variant Quality Score Recalibration. The cohort.recalibrated.pass.vep.vcf.gz is the filtered and VEP annotated version of cohort.recalibrated.vcf.gz (only variants with PASS are kept).

For most applications, the cohort.recalibrated.pass.vep.vcf.gz file, is the file you want to continue working with.

Profile and test to gain insights into the performance of your beautiful Python code

Profile and test to gain insights into the performance of your beautiful Python code View Demo - Report Bug - Request Feature QuickPotato in a nutshel

Joey Hendricks 138 Dec 06, 2022
A simple interpreted language for creating basic mathematical graphs.

graphr Introduction graphr is a small language written to create basic mathematical graphs. It is an interpreted language written in python and essent

2 Dec 26, 2021
Arras.io Highest Scores Over Time Bar Chart Race

Arras.io Highest Scores Over Time Bar Chart Race This repo contains a python script (make_racing_bar_chart.py) that can generate a csv file which can

Road 2 Jan 16, 2022
在原神中使用围栏绘图

yuanshen_draw 在原神中使用围栏绘图 文件说明 toLines.py 将一张图片转换为对应的线条集合,视频可以按帧转换。 draw.py 在原神家园里绘制一张线条图。 draw_video.py 在原神家园里绘制视频(自动按帧摆放,截图(win)并回收) cat_to_video.py

14 Oct 08, 2022
A Python Library for Self Organizing Map (SOM)

SOMPY A Python Library for Self Organizing Map (SOM) As much as possible, the structure of SOM is similar to somtoolbox in Matlab. It has the followin

Vahid Moosavi 497 Dec 29, 2022
Data visualization using matplotlib

Data visualization using matplotlib project instructions Top 5 Most Common Coffee Origins In this visualization I used data from Ankur Chavda on Kaggl

13 Oct 27, 2021
Generate "Jupiter" plots for circular genomes

jupiter Generate "Jupiter" plots for circular genomes Description Python scripts to generate plots from ViennaRNA output. Written in "pidgin" python w

Robert Edgar 2 Nov 29, 2021
TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow with breakpoints + real-time visualization of the data flowing through the computational graph

TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow (Google's Deep Learning framework) with breakpoints + real-time visualization of the data flowing through the comput

Eric Jang 1.4k Dec 15, 2022
Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns.

Make Complex Heatmaps Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns. H

Zuguang Gu 973 Jan 09, 2023
Comparing USD and GBP Exchange Rates

Currency Data Visualization Comparing USD and GBP Exchange Rates This is a bar graph comparing GBP and USD exchange rates. I chose blue for the UK bec

5 Oct 28, 2021
Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:

JoyPy JoyPy is a one-function Python package based on matplotlib + pandas with a single purpose: drawing joyplots (a.k.a. ridgeline plots). The code f

Leonardo Taccari 462 Jan 02, 2023
SummVis is an interactive visualization tool for text summarization.

SummVis is an interactive visualization tool for analyzing abstractive summarization model outputs and datasets.

Robustness Gym 246 Dec 08, 2022
HW 02 for CS40 - matplotlib practice

HW 02 for CS40 - matplotlib practice project instructions https://github.com/mikeizbicki/cmc-csci040/tree/2021fall/hw_02 Drake Lyric Analysis Bar Char

13 Oct 27, 2021
Graphing communities on Twitch.tv in a visually intuitive way

VisualizingTwitchCommunities This project maps communities of streamers on Twitch.tv based on shared viewership. The data is collected from the Twitch

Kiran Gershenfeld 312 Jan 07, 2023
A Python toolbox for gaining geometric insights into high-dimensional data

"To deal with hyper-planes in a 14 dimensional space, visualize a 3D space and say 'fourteen' very loudly. Everyone does it." - Geoff Hinton Overview

Contextual Dynamics Laboratory 1.8k Dec 29, 2022
Cartopy - a cartographic python library with matplotlib support

Cartopy is a Python package designed to make drawing maps for data analysis and visualisation easy. Table of contents Overview Get in touch License an

1.2k Jan 01, 2023
basemap - Plot on map projections (with coastlines and political boundaries) using matplotlib.

Basemap Plot on map projections (with coastlines and political boundaries) using matplotlib. ⚠️ Warning: this package is being deprecated in favour of

Matplotlib Developers 706 Dec 28, 2022
Simple addon for snapping active object to mesh ground

Snap to Ground Simple addon for snapping active object to mesh ground How to install: install the Python file as an addon use shortcut "D" in 3D view

Iyad Ahmed 12 Nov 07, 2022
A Python function that makes flower plots.

Flower plot A Python 3.9+ function that makes flower plots. Installation This package requires at least Python 3.9. pip install

Thomas Roder 4 Jun 12, 2022
BrowZen correlates your emotional states with the web sites you visit to give you actionable insights about how you spend your time browsing the web.

BrowZen BrowZen correlates your emotional states with the web sites you visit to give you actionable insights about how you spend your time browsing t

Nick Bild 36 Sep 28, 2022